

КАТАЛОГ **АЛЮМИНИЕВЫХ КОНСТРУКЦИЙ** И ПРОФИЛЕЙ

СВЕТОПРОЗРАЧНЫЕ НАКЛОННЫЕ КРЫШИ, ФАСАДЫ, ЗИМНИЕ САДЫ, АРКИ

КП50К

системы СИАЛ

КАТАЛОГ

алюминиевых конструкций

и профилей системы СИАЛ КП50К

(Издание 4)

СВЕТОПРОЗРАЧНЫЕ НАКЛОННЫЕ КРЫШИ ФАСАДЫ, ЗИМНИЕ САДЫ, АРКИ

СОДЕРЖАНИЕ

КРАТКОЕ ОПИСАНИЕ СИСТЕМЫ СИАЛ КП50К	3
ПРОФИЛИ	5
КОМПЛЕКТУЮЩИЕ	51
ТИПОВЫЕ СБОРОЧНЫЕ УЗЛЫ	
ОСНОВНЫЕ СЕЧЕНИЯ ВИТРАЖА	73
ДЕТАЛИРОВКИ И УЗЛЫ СБОРКИ	89
НЕСТАНДАРТНЫЕ СЕЧЕНИЯ ВИТРАЖА	135
СЕЧЕНИЯ И УЗЛЫ ПОВОРОТОВ ВИТРАЖА	141
МОНТАЖНЫЕ УЗЛЫ И СЕЧЕНИЯ	187
ВСТРАИВАЕМЫЕ КОНСТРУКЦИИ	267
установка дверей	268
установка оконных створок	291
установка вентиляционных люков	
установка створок с открыванием наружу	321
ПОДСИСТЕМЫ СИАЛ КП50К	339
трехуровневый фасад	341
скрытая створка	344
фальшфасад	349
тепло-холодный фасад СИАЛ КП50K TX	355
полуструктурное остекление	361
"плоский" фасад СИАЛ КП50КП	
крепление к металлокаркасу	
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
МЕТОДИКА ПОДБОРА СТОЕК И РИГЕЛЕЙ	403
МЕТИЗЫ	439

УВАЖАЕМЫЕ ГОСПОДА!

В любом городе, и в крупнейшем мегаполисе, и в небольшом рабочем поселке нас радует новое, красивое здание. Независимо от масштабов, легкая алюминиевая конструкция и стекло выгодно подчеркивают его современность. Меняется настроение, растет оптимизм и желание созидать, строить новое. Современные технологии строительства дают все больше возможностей для реализации творческих замыслов архитекторов и строителей при возведении зданий и сооружений.

Здесь кратко представлены архитектурные и технические особенности разработанных нами систем, их возможности. В зависимости от основного назначения конструкции можно выбрать систему с наилучшими показателями коэффициентов сопротивления теплопередаче, огнестойкости, с повышенными требованиями по ветровым нагрузкам, с повышенными декоративными требованиями. На системы имеется весь спектр нормативно-технической и разрешительной документации.

Специалисты компании "Сегал" готовы работать с Вами в индивидуальном порядке, по индивидуальным проектам, создавать специальные системы.

Наша совместная работа приведет к еще более красивым решениям в облике городов, и подвигнет к новым творческим поискам.

ПРИГЛАШАЕМ К СОТРУДНИЧЕСТВУ!

Краткое описание системы СИАЛ КП50К

Система **СИАЛ КП50К** предназначена для изготовления легких стеновых ограждений подвесного и заполняющего типов, а также крыш, фонарей и других пространственных конструкций. Основу системы **СИАЛ КП50К** составляют алюминиевые профили стоек и ригелей с видимой шириной 50 мм.

Критерии, по которым определяется метод построения фасада (поэлементный, стоечноригельный или смешанный), основываются на строительных и физических параметрах здания и должны быть определены на стадии проектирования.

Введение в конструкцию фасада температурных швов по высоте стоек позволяет реализовать поэлементную сборку фасада и компенсировать температурные расширения.

Система основана на соединении стоек и ригелей внахлест (ригели фрезеруются соответствующим образом) и позволяет осуществлять повороты витража на угол до 45° в плане и заворот до 90° на наклонную крышу.

Все стоечные и ригельные профили имеют в зоне установки стеклопакета пазы, которые служат для вентиляции области фальца стеклопакета и отвода из нее влаги. Эта система не имеет полости для отвода конденсата с внутренней поверхности стеклопакета, поэтому не рекомендуется ее использование в помещениях с повышенным уровнем влажности.

Остекление, а также установка оконных блоков и дверей производится снаружи с использованием резиновых уплотнителей и алюминиевых держателей, которые крепятся самонарезающими винтами из нержавеющей стали. Снаружи держатели закрываются декоративными крышками.

Специально разработаны конструкции, которые позволяют устанавливать скрытые створки, створки с открыванием наружу и вентиляционные люки.

Указанные в каталоге размеры, масса и периметры профилей являются теоретическими и могут изменяться в зависимости от допусков на размеры профилей. Прочностной расчет каждой конкретной конструкции фасада производится при его проектировании. Массоинерционные характеристики профилей, необходимые для прочностных расчетов, приведены в данном каталоге.

ПОКРЫТИЕ ПОВЕРХНОСТИ

Профили, из которых изготавливаются элементы фасада и встраиваемые в фасад окна и двери, могут быть окрашены порошковыми красителями в соответствии с ГОСТ 9.410-88. Цвет покрытия - определяется заказчком по шкале RAL.

Толщина покрытия зависит от марки красителя и лежит в диапазоне 60-120 мкм. Окрашенные профили выдерживаются в сушильной камере при температуре 180-200°C в течение 20 минут.

УСТАНОВКА ЗАПОЛНЕНИЯ

В качестве заполнения в конструкциях системы **СИАЛ кп50к** может быть использовано стекло толщиной 6 мм по ГОСТ 111-2001, стеклопакеты однокамерные толщиной 24 мм и двухкамерные стеклопакеты толщиной 32 и 40 мм по ГОСТ 24866-99, либо панели толщиной 6, 24, 32 и 40 мм. Заполнение устанавливается на внутренние резиновые уплотнители и фиксируется алюминиевыми держателями с установленными в них наружными уплотнителями.

Стекло, стеклопакеты, либо панели при установке в конструкцию фасада опираются на подкладки. Материал подкладок - полиамид, полиэтилен, ПВХ или полипропилен. Полимерные подкладки, в свою очередь, устанавливаются на подкладки из алюминиевого профиля, установленные в ригеле. Длина подкладок не менее 100 мм. Под стекло и панели допускается не ставить алюминиевые подкладки. Подкладки не должны препятствовать воздухообмену или водоотводу.

Выбор внутреннего уплотнителя и термовставок осуществляется в зависимости от толщины заполнения. Прижимной винт выбирается исходя из толщины заполнения и сечения алюминиевого профиля.

ИСПОЛЬЗУЕМЫЕ МАТЕРИАЛЫ

Алюминиевые профили:

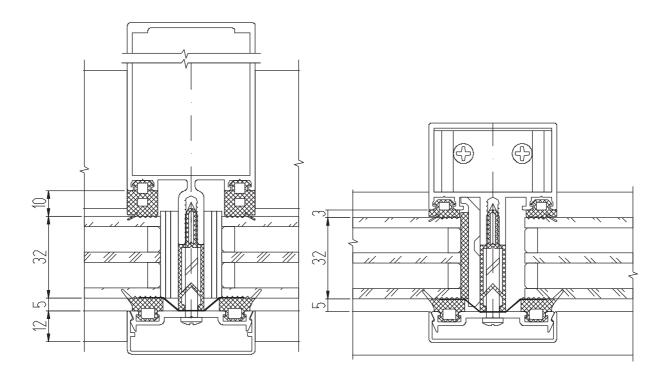
Профили из сплава АДЗ1 изготавливаются по ГОСТ 22233-2001. Состояние материала - Т1. Сплав устойчив к коррозии и позволяет изготавливать профили высокой точности.

Уплотнители:

Резиновые профили используются для уплотнения стекла, стеклопакетов или сэндвичпанелей, а также для уплотнения рам створок, дверей и вентиляционных люков. Различные по конфигурации и высоте уплотнители изготавливают из EPDM по ГОСТ 30778-2001. Уплотнители сохраняют свои свойства в среде воздуха при любых видах атмосферного воздействия в интервале температур от -55 до +70°C.

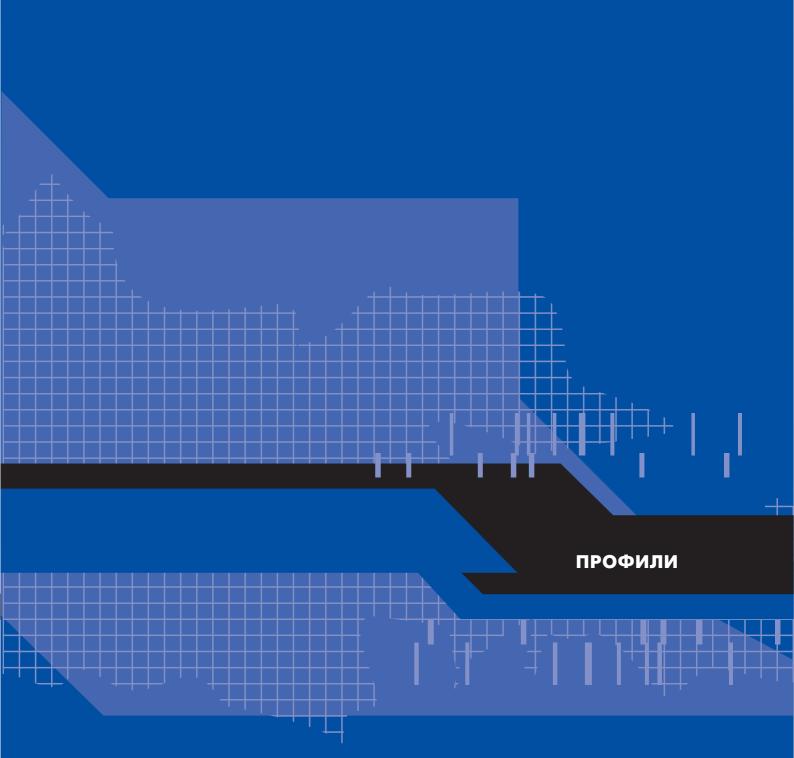
Термоизоляция:

Терморазрывные вставки высотой 18, 26 и 35 мм выбираются в зависимости от толщины заполнения. Изготавливаются из жесткого ПВХ по ГОСТ 30673-99.

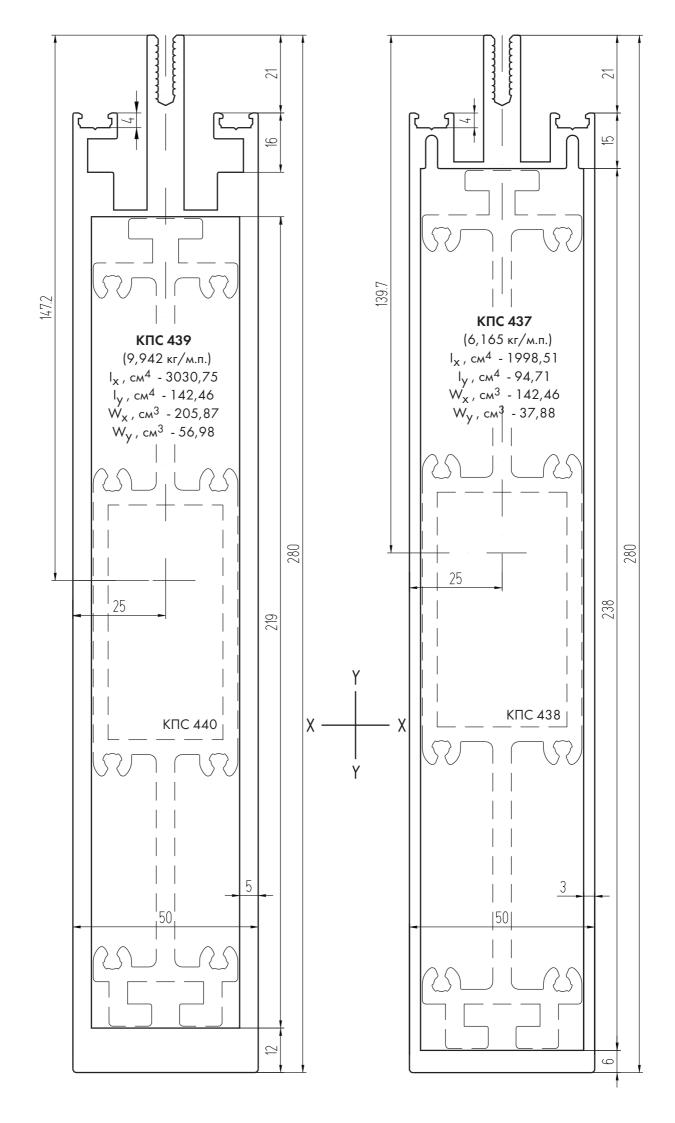

Элементы монтажа:

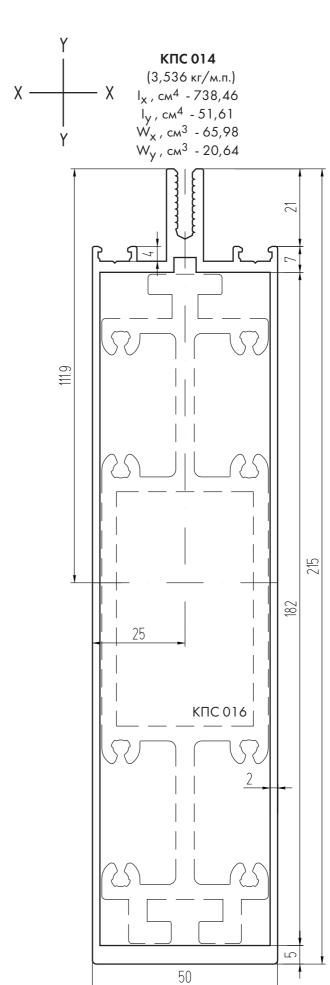
Стойки и рамы крепятся к конструкциям здания при помощи специальных стальных или алюминиевых анкеров. Детали анкеров прикрепляются со стороны торца стоек к перекрытиям, стенам или металлоконструкциям при помощи монтажных дюбелей, анкеров или сварки. Стальные элементы, соприкасающиеся с алюминиевыми деталями должны быть оцинкованы, а при применении грунтовочных покрытий в соответствии с ГОСТ 21519-2003 изолированы от алюминиевых деталей.

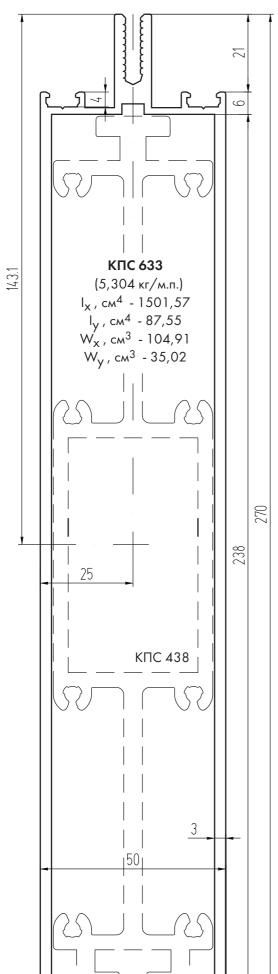
Стойки и ригели соединяются между собой при помощи специальных алюминиевых закладных профилей из сплава АДЗ1Т1.


Кроме этого есть набор вспомогательных профилей (сливы, адаптеры, нащельники), предназначенных для встраивания витражей в строительные проемы, а также расширения их функциональных возможностей.

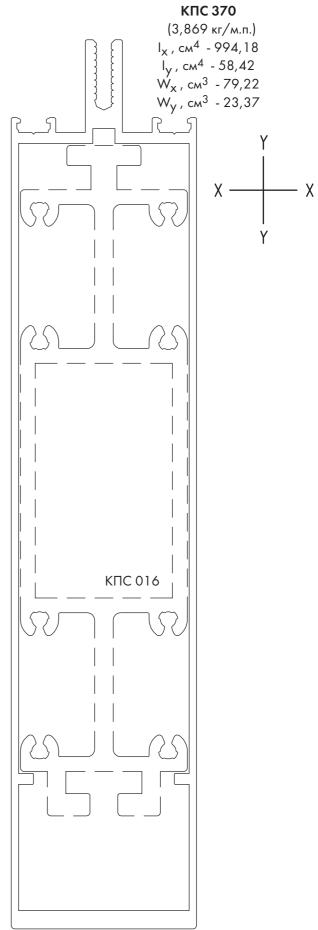
При монтаже необходимо соблюдать все меры по защите конструкций, рам и элементов от механических повреждений и загрязнений. После сборки и монтажа готовую конструкцию или изделие необходимо очистить или протереть специальными чистящими средствами.

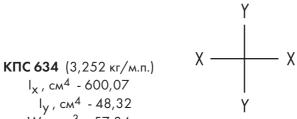

ООО "ЛПЗ "Сегал" оставляет за собой право вносить изменения и дополнения, связанные с дальнейшим развитием и постоянным повышением технического уровня системы. Все права на настоящую публикацию и материалы данного каталога принадлежат разработчику системы, запрещается их несанкционированное тиражирование.

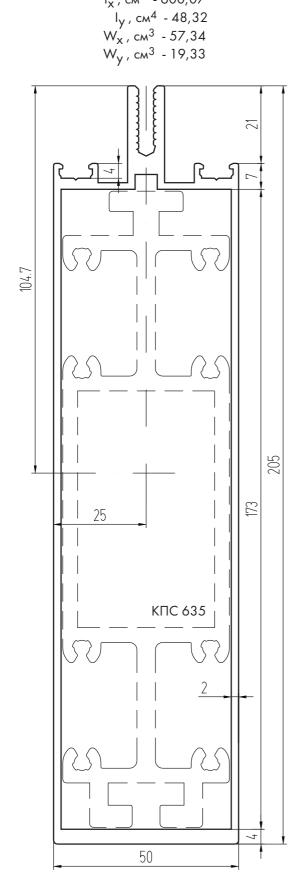


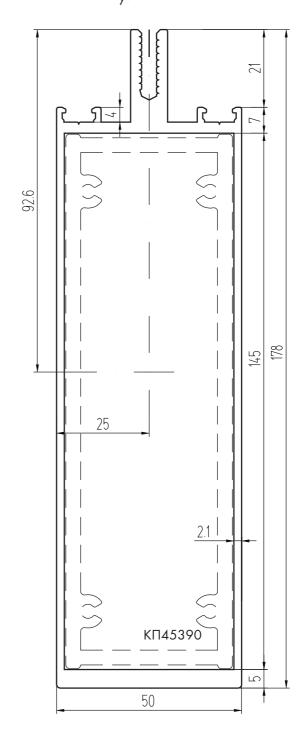

®

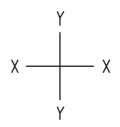


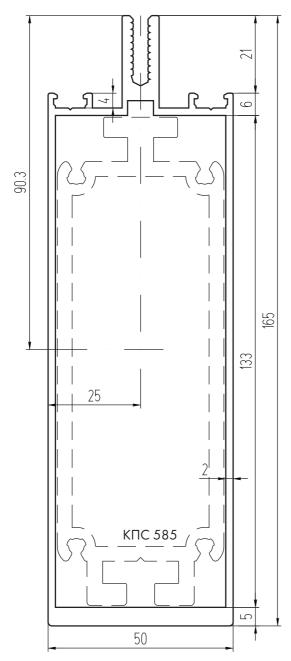




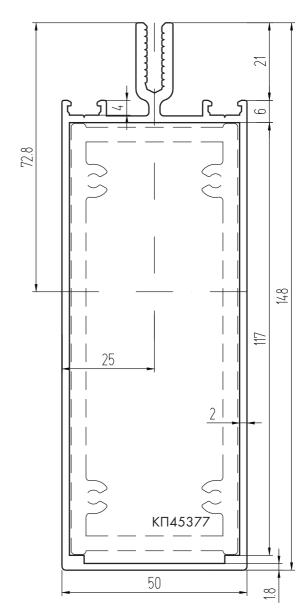




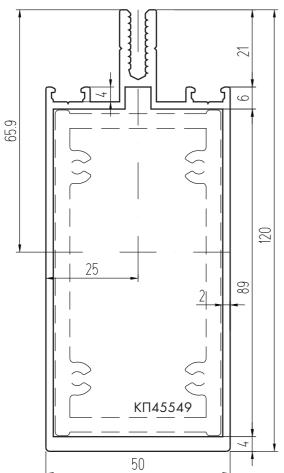

Χ **КП45392** (3,276 кг/м.п.) I_x , cm⁴ - 469,37 I_y , cm⁴ - 44,61 W_x , cm³ - 50,7 W_y , cm³ - 17,84



I_x , см⁴ - 600,07


КПС 584 (2,856 кг/м.п.)

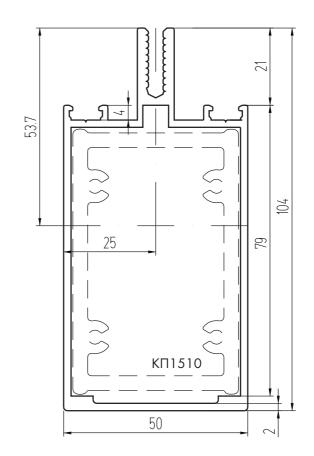
I_X, см⁴ - 353,1


I_y, см⁴ - 39,26

W_X, см³ - 39,11

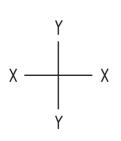
W_y, см³ - 15,7

ΚΠ45372 (2,304 κг/м.π.) I_x , cм⁴ - 205,3 I_y , cм⁴ - 33,47 W_x , cм³ - 27,28 W_y , cм³ - 13,39

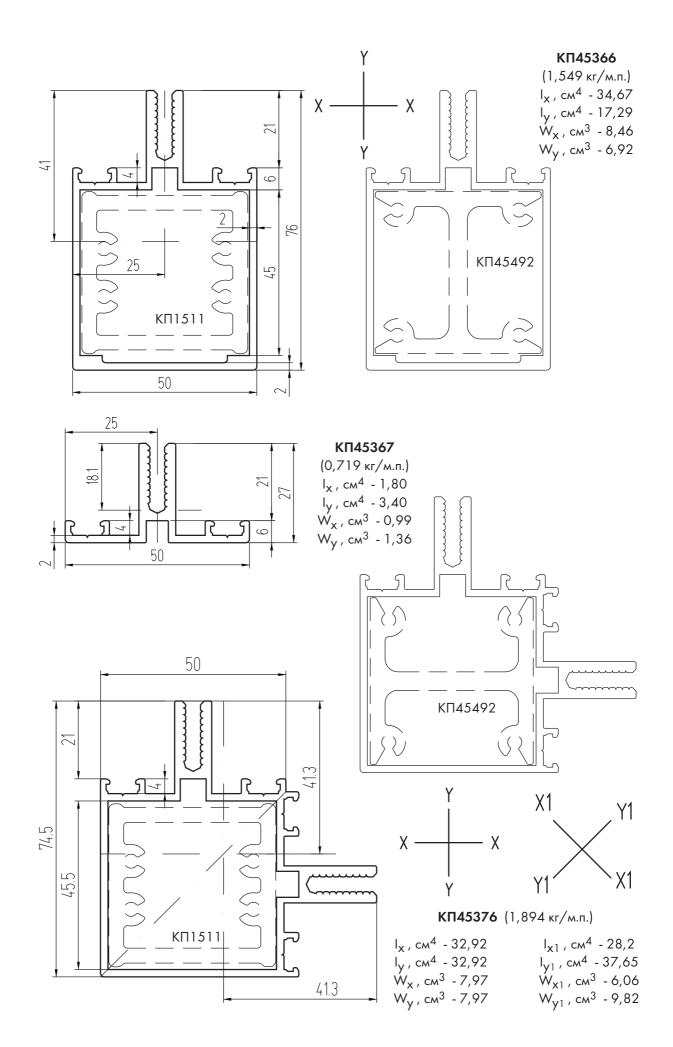

KΠ45548 (2,207 κг/м.π.)

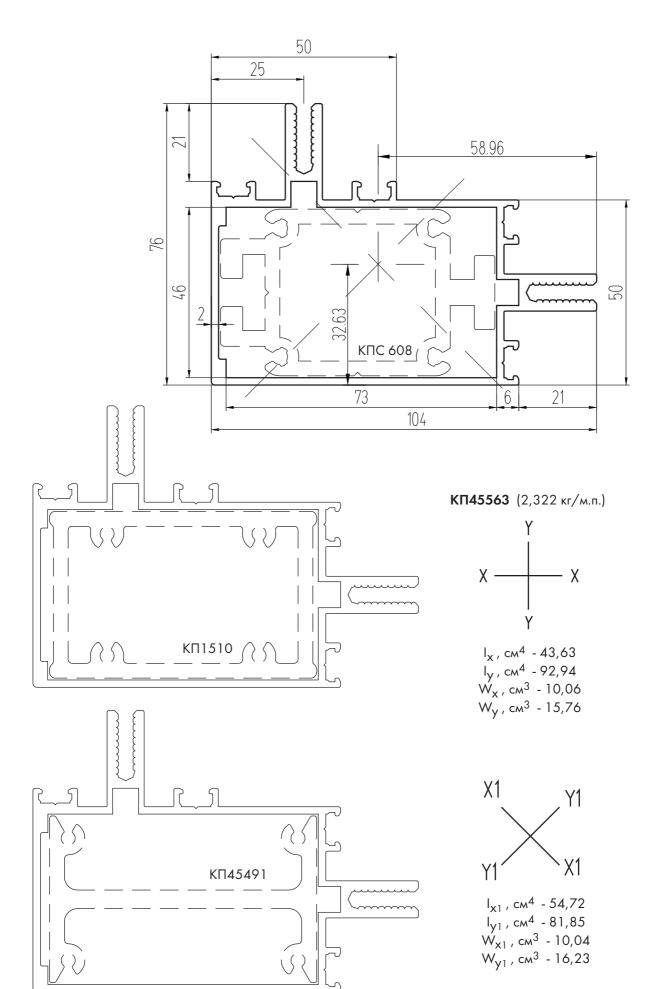
I_X, cм⁴ - 140,01

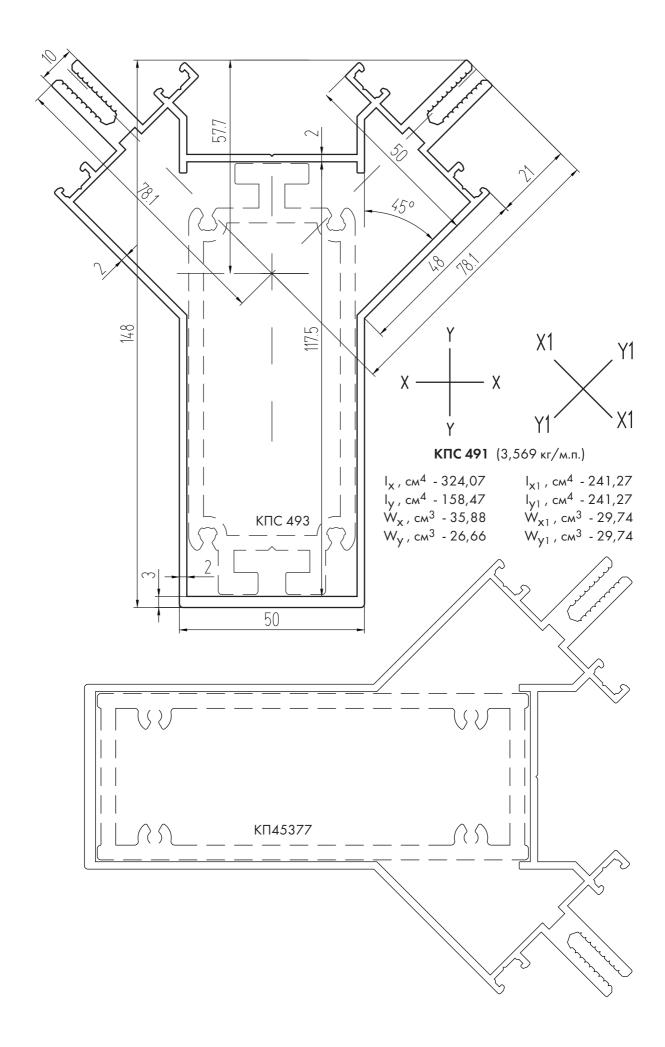
I_y, cм⁴ - 28,08

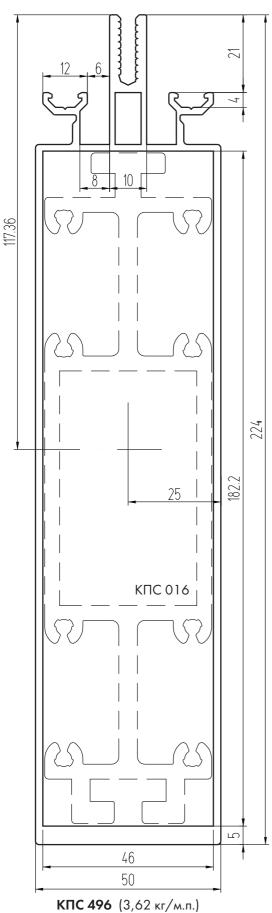

W_X, cм³ - 21,26

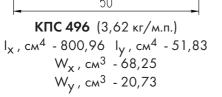
W_y, cм³ - 11,23

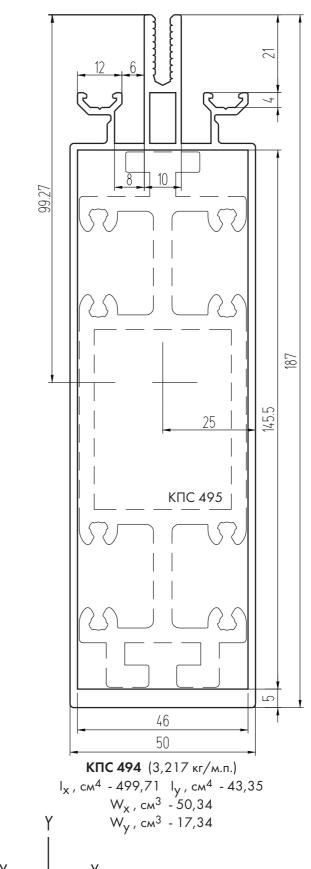


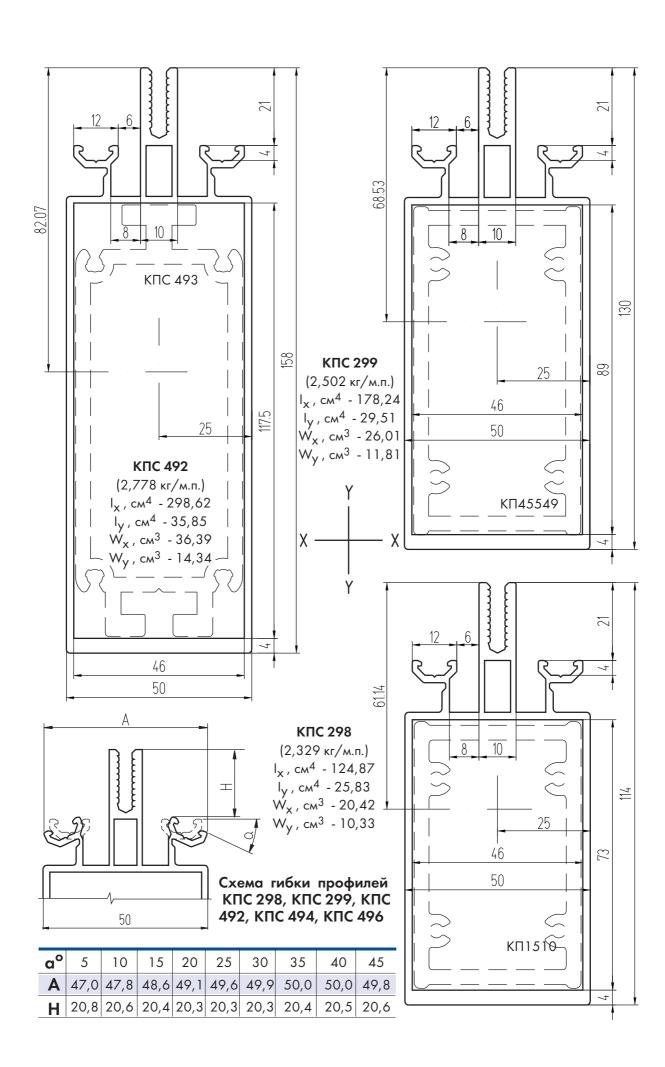

КП45370

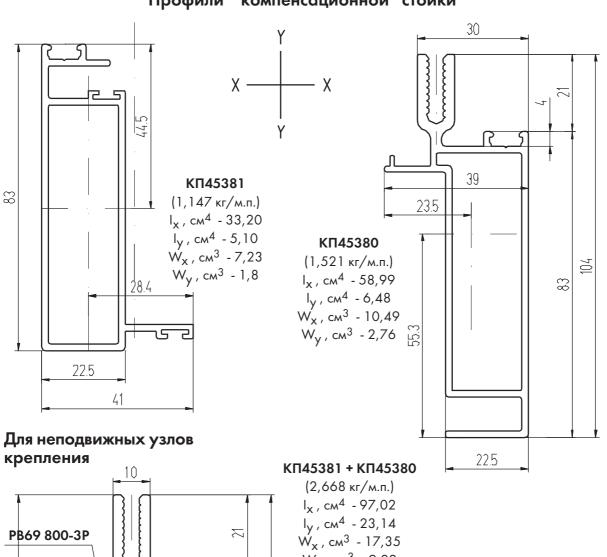


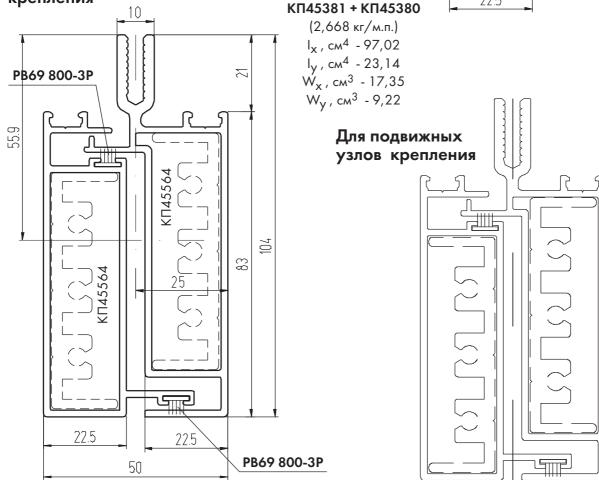




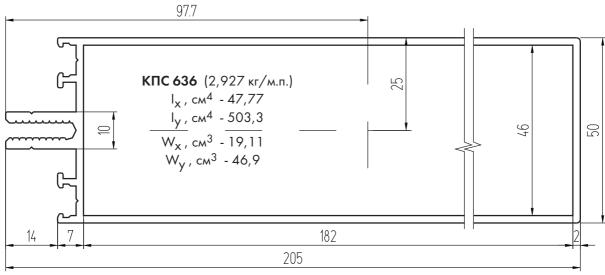


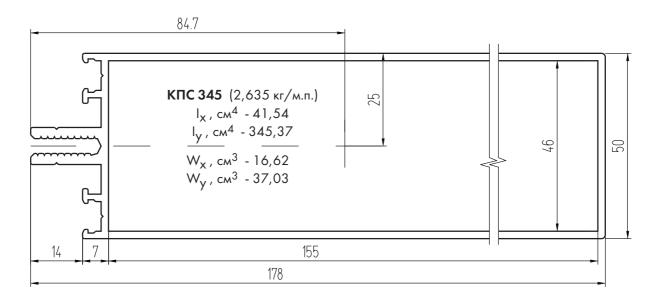


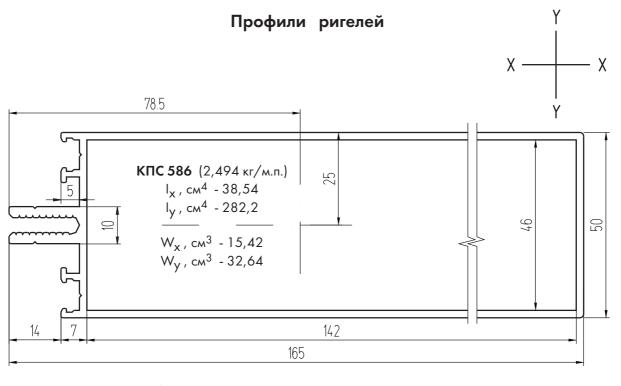


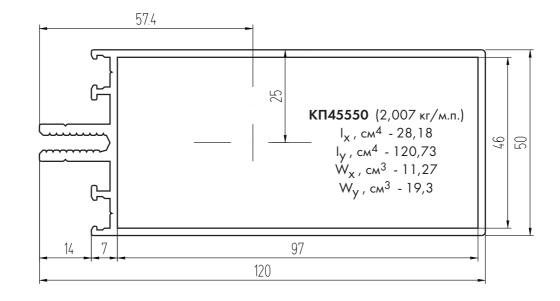

- X χ -

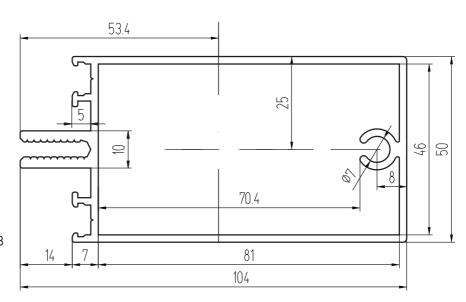


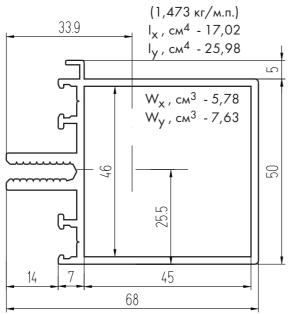

Профили компенсационной стойки











КП45368

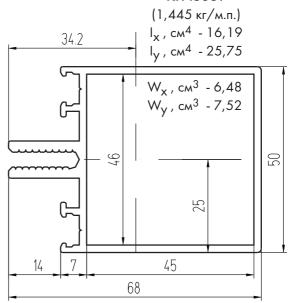
(1,973 кг/м.п.) I_X , см⁴ - 24,55 I_y , см⁴ - 92,74 W_X , см³ - 9,82 W_y , см³ - 17,38

КПС 371

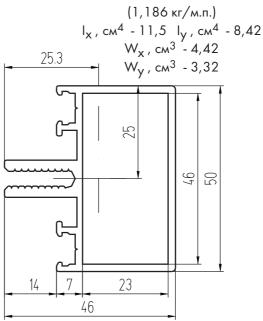
КПС 372

(1,213 кг/м.п.)

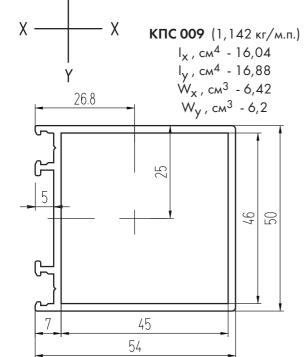
I_x, см⁴ - 11,87 I_y, см⁴ - 8,46

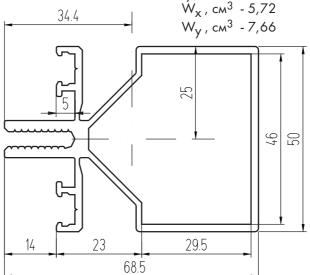

W_y, см³ - 4,05

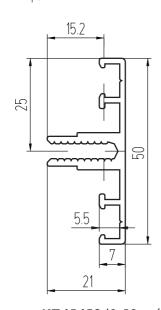
W_y, см³ - 3,36

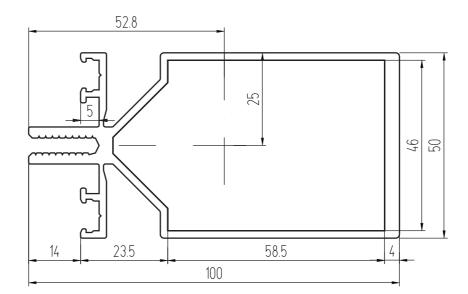

14 7 23

46

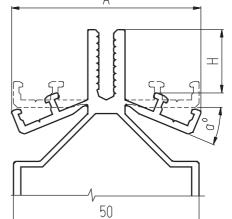

КП45369


КП45371

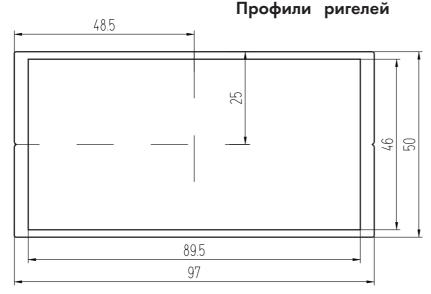




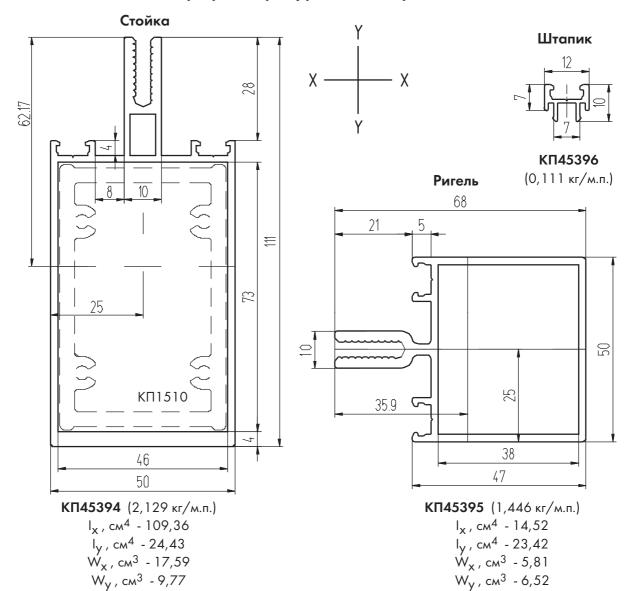
	КП45375 (1,:	524 кг/м.п.)
	I _х , см ⁴ -	14,30
	l_y , cm^4 -	26,35
	\acute{W}_{x} , cM^3	- 5,72
	W_y , cm^3	- 7,66
$\overline{}$		$\overline{}$



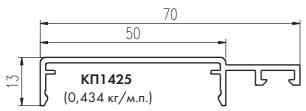
Y


 $K\Pi45453$ (0,59 κг/м.π.) I_X , cм⁴ - 3,17 I_y , cм⁴ - 0,68 W_X , cм³ - 1,27 W_y , cм³ - 0,45

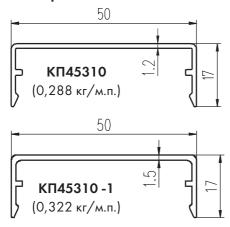
KΠC 499 (2,188 кг/м.п.) I_{x} , cm^{4} - 23,7 I_{y} , cm^{4} - 95,78 W_{x} , cm^{3} - 9,48 W_{y} , cm^{3} - 18,15


Схема гибки профилей КП45375 и КПС 499

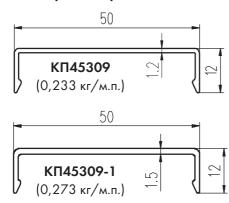
a°	5	10	15	20	25	30	35	40	45
	50,7				-				
Н	14,6	15,3	16,0	16,7	17,4	18,2	18,9	19, <i>7</i>	20,4

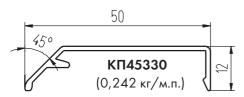

KTC 501 (1,982 кг/м.п.) I_{x} , cm^{4} - 28,43 I_{y} , cm^{4} - 105,29 W_{x} , cm^{3} - 11,37 W_{y} , cm^{3} - 21,71

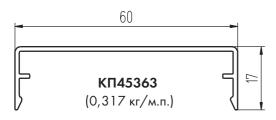
Профили трехуровневого фасада

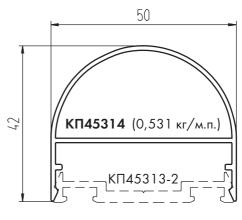


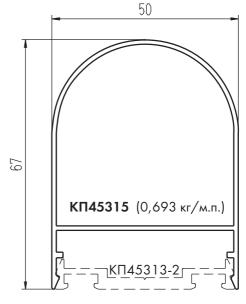
Профили крышек

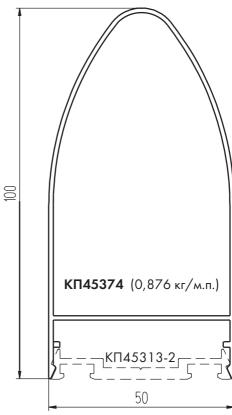



Крышки стойки

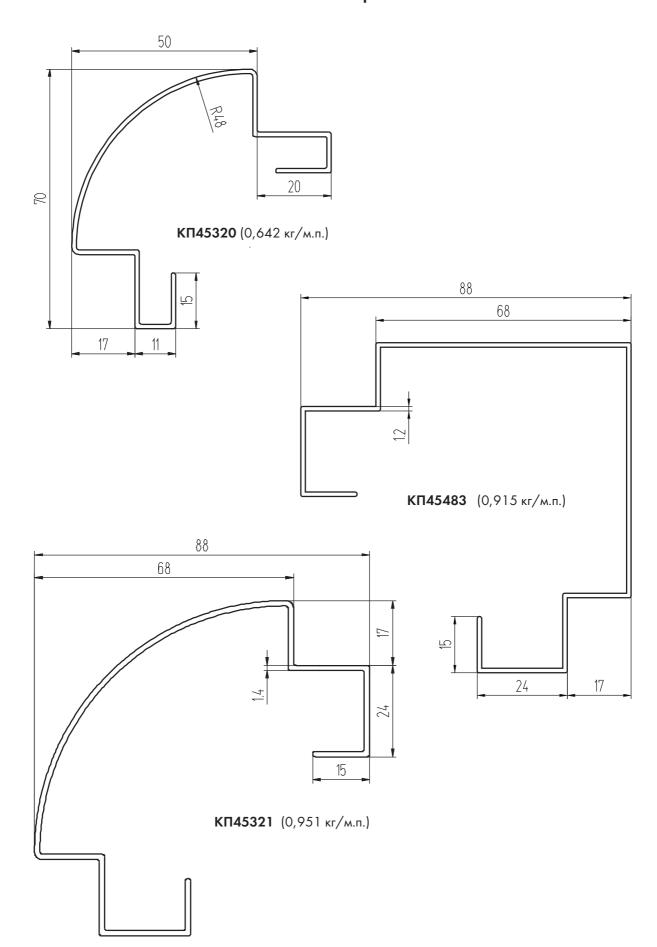

Крышки ригеля

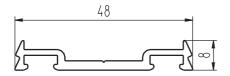


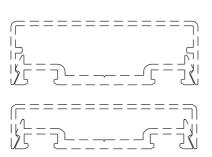

Крышка для держателя КП45329

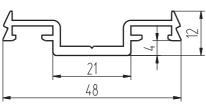


Крышка для держателей КП45360 и КПС 576



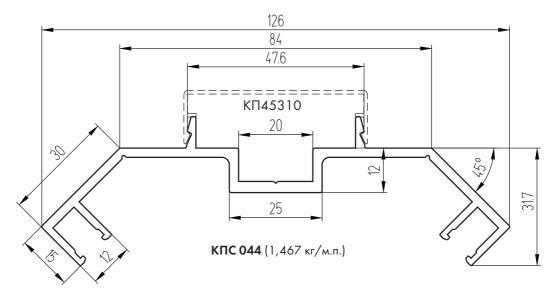



Угловые крышки

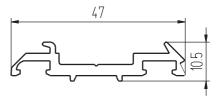


Держатели ригеля и стойки

КП45313-2 (0,355 кг/м.п.)

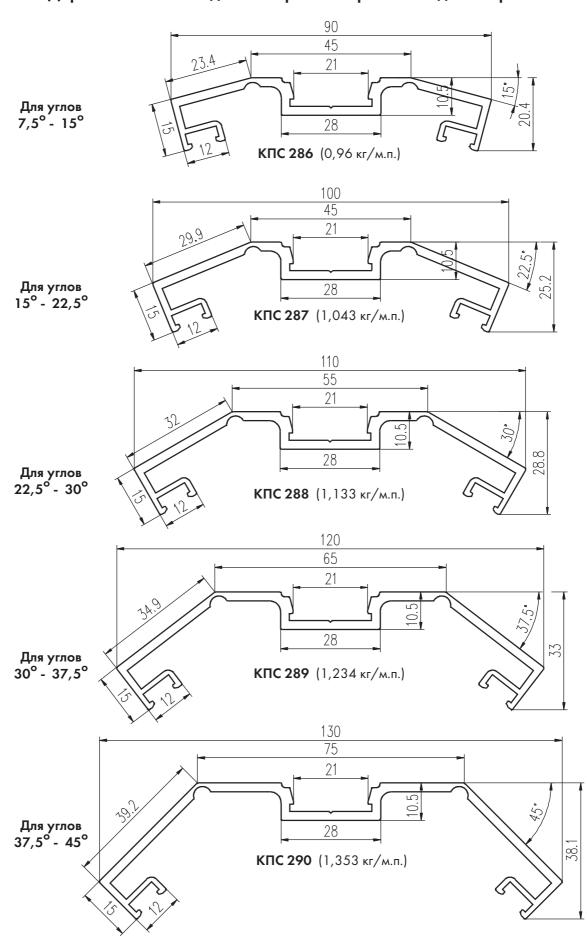

КПС 575 (0,401 кг/м.п.)

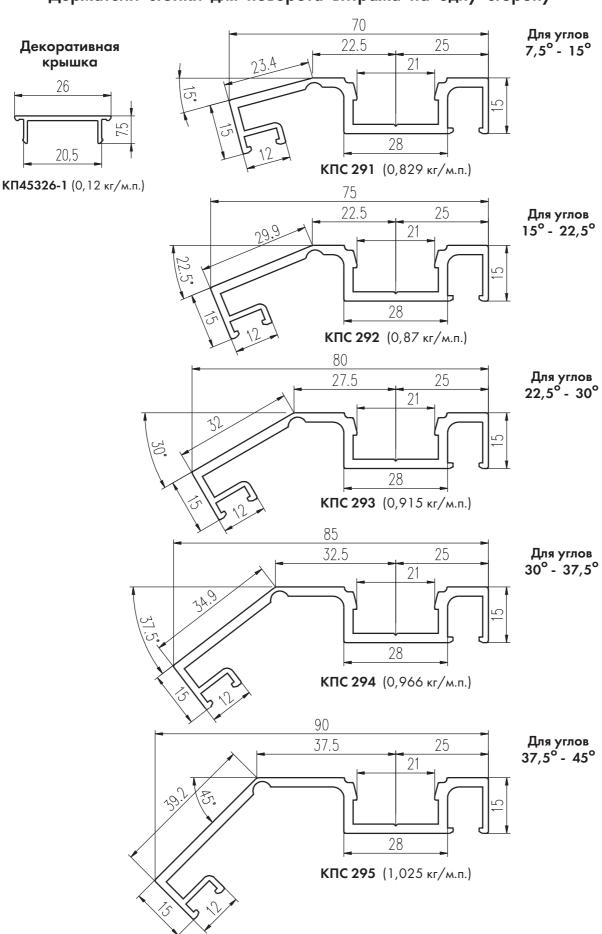
47.6

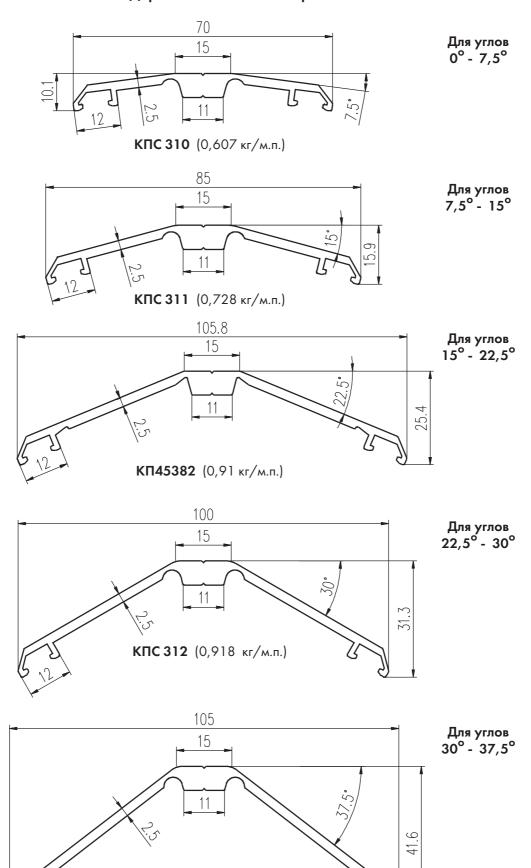

КП45310

КП45354 (1,255 кг/м.п.)

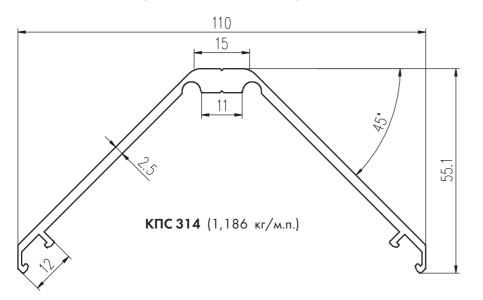
Держатель стойки для угловых заворотов на 90°



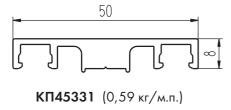

КП45329 (0,428 кг/м.п.)


Держатели стойки для поворота витража на две стороны

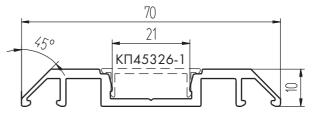
Держатели стойки для поворота витража на одну сторону



Держатели конькового ригеля

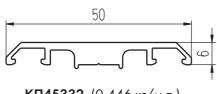

КПС 313 (1,032 кг/м.п.)

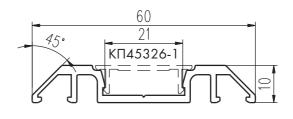
Держатель конькового ригеля



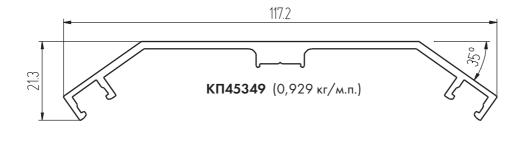
Для углов 37,5° - 45°

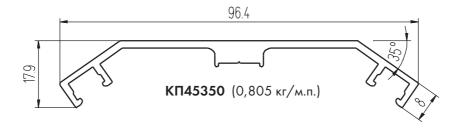
Держатель стойки



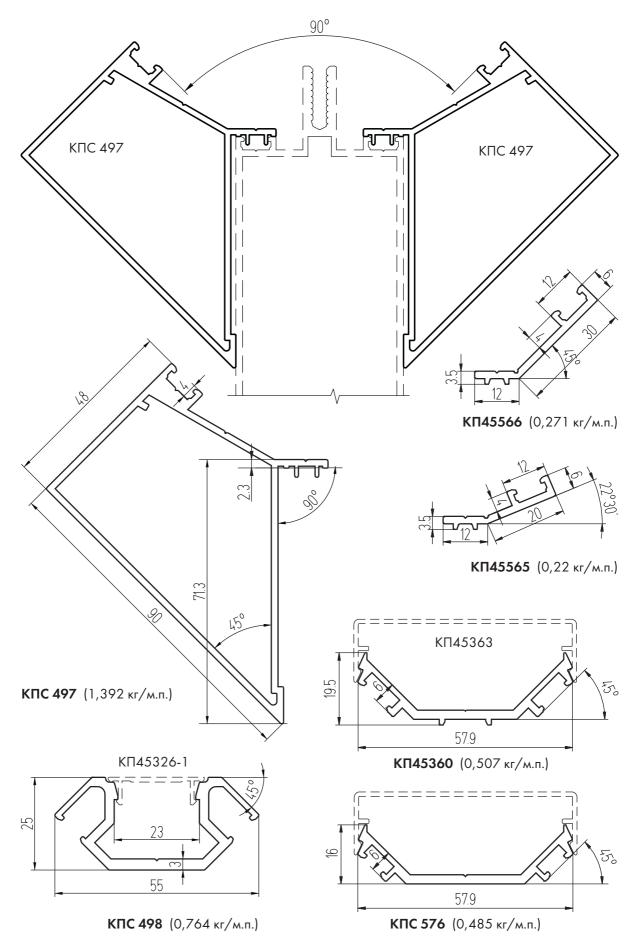


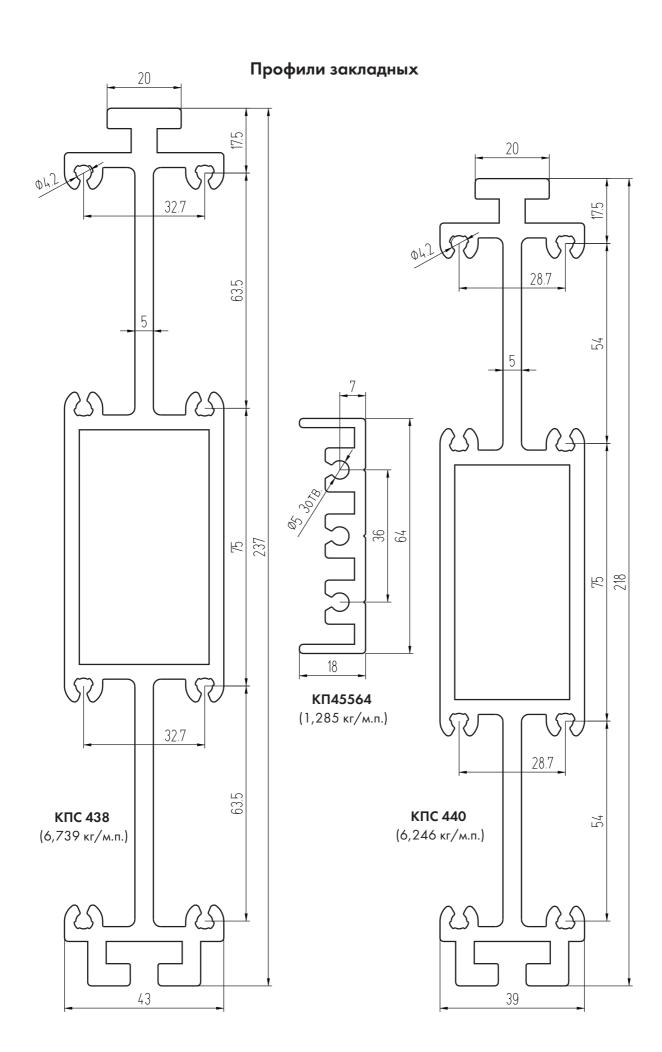
КП45357 (0,569 кг/м.п.)

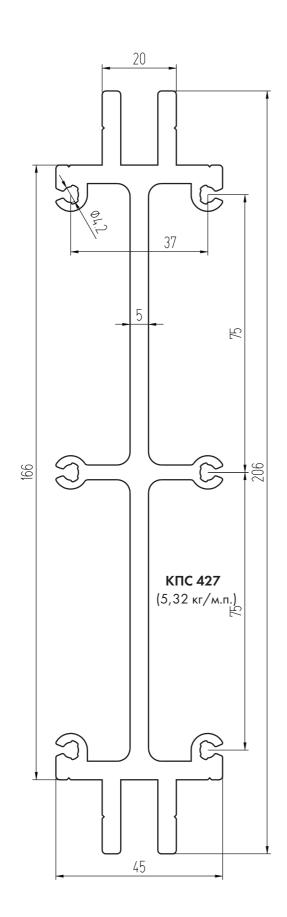


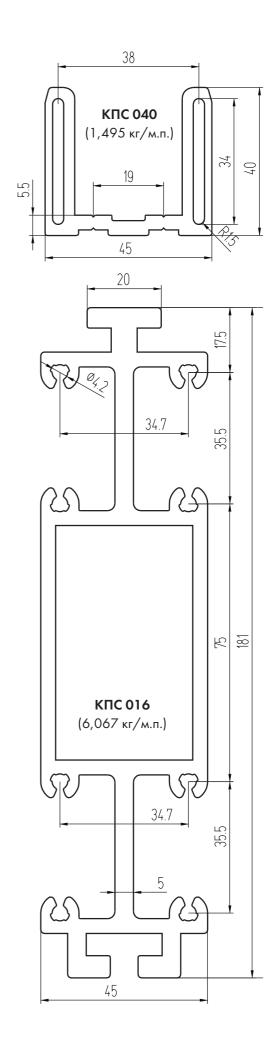

КП45332 (0,446 кг/м.п.)

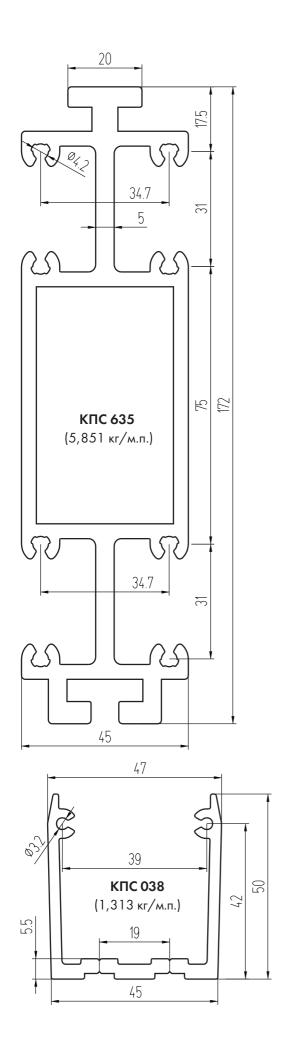
КП45324 (0,466 кг/м.п.)

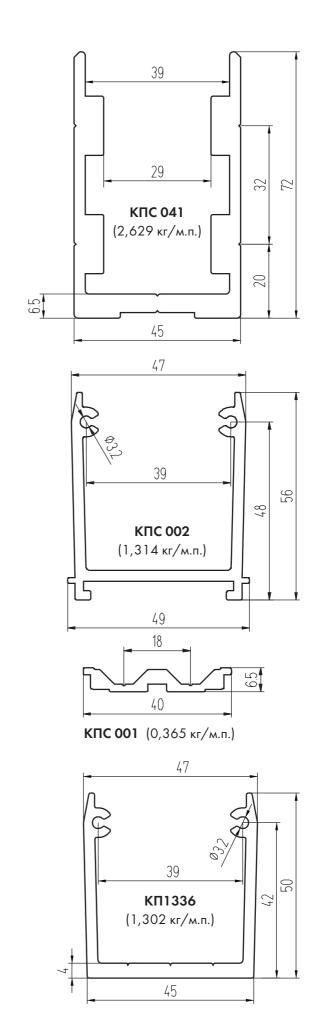

Держатели стойки правильной пирамиды

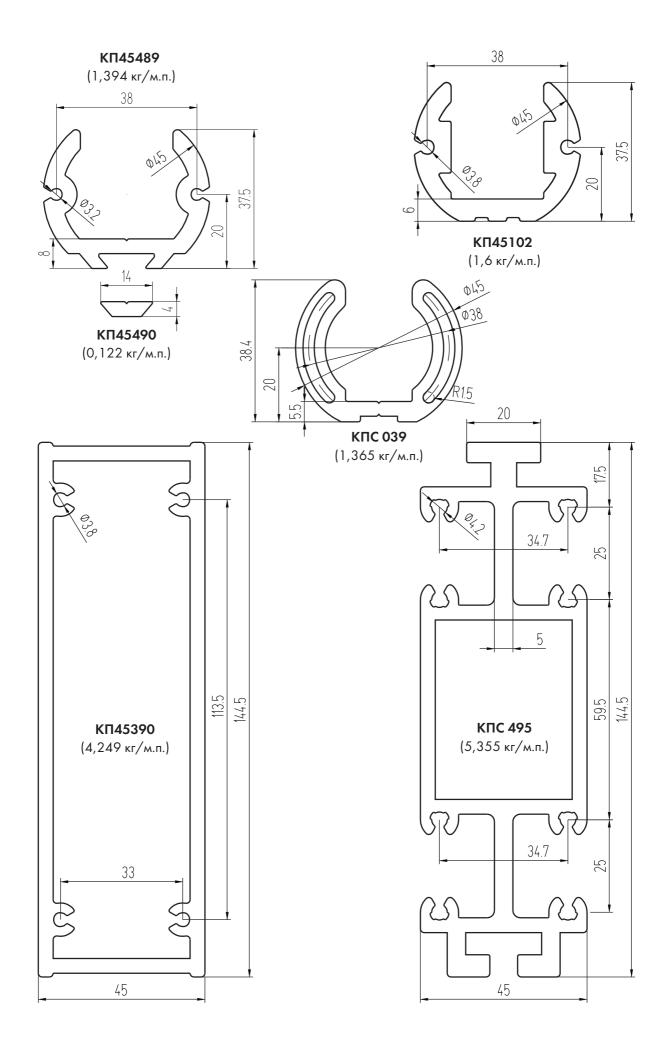


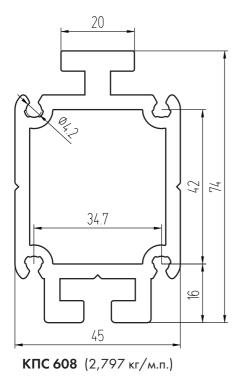


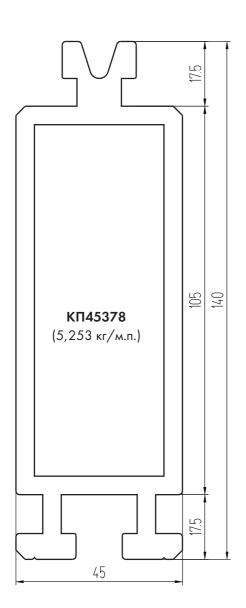

Профили для внутреннего поворота витража на 90° и 135°

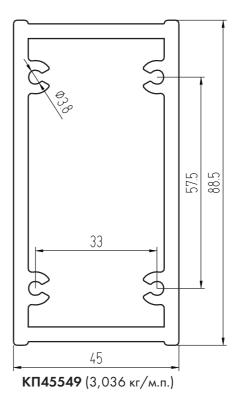


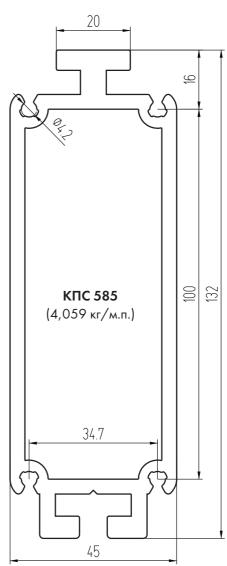


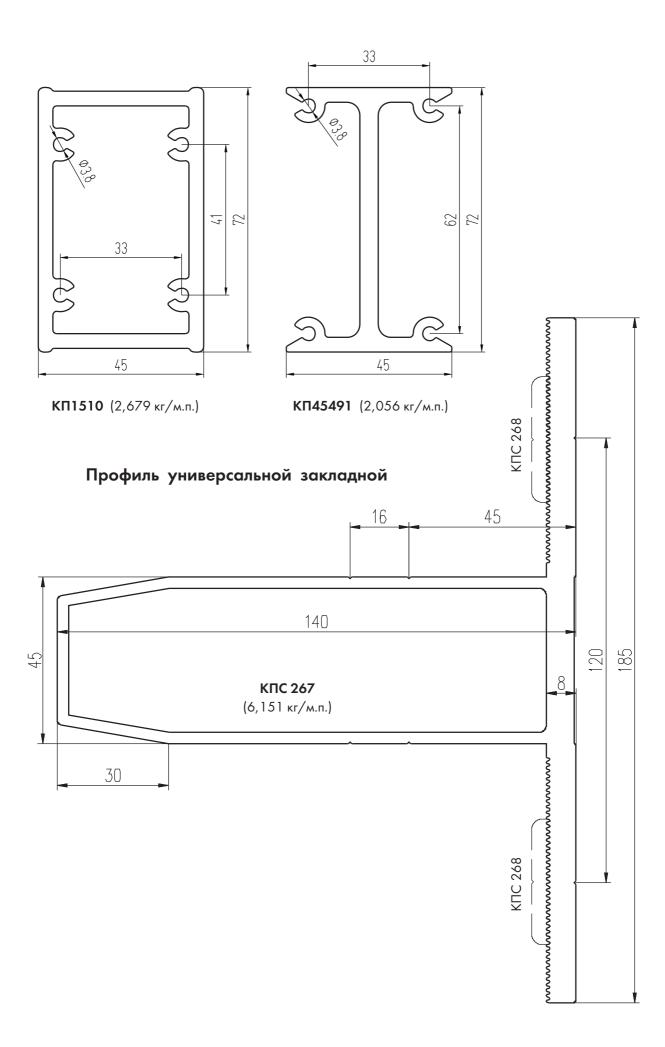


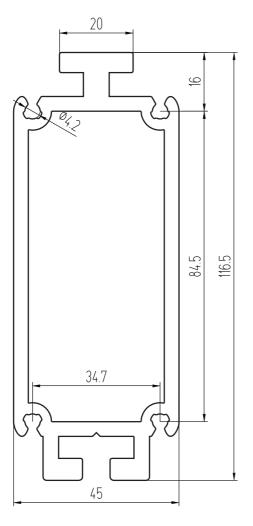


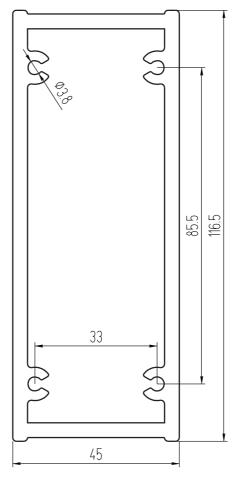


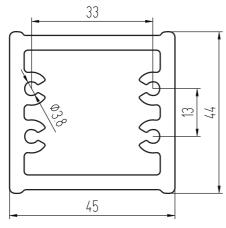


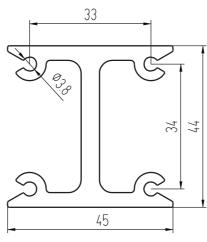




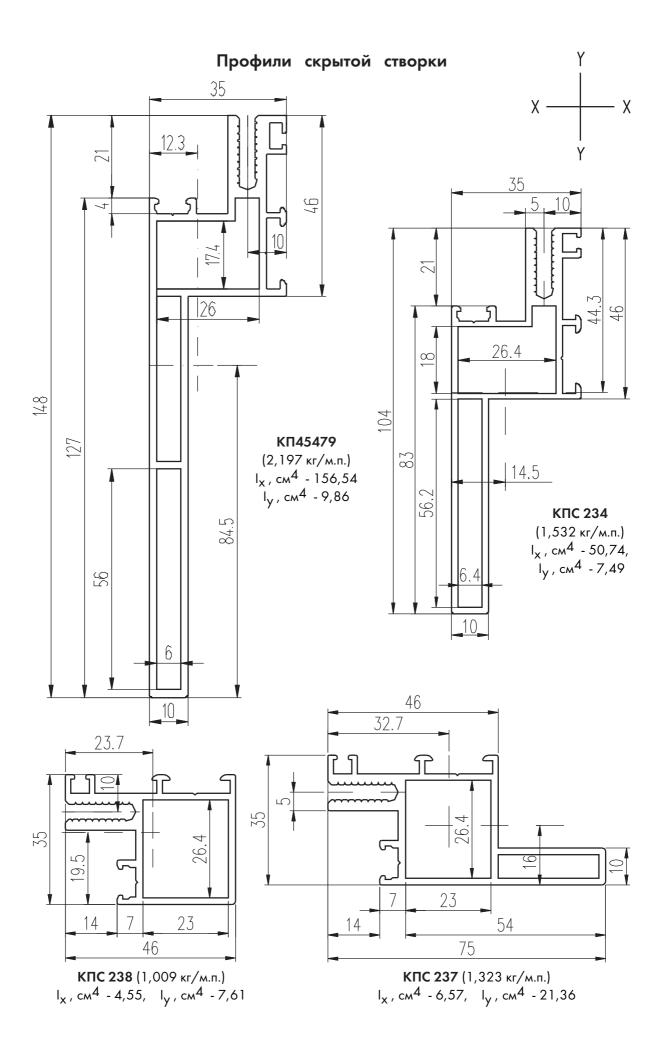




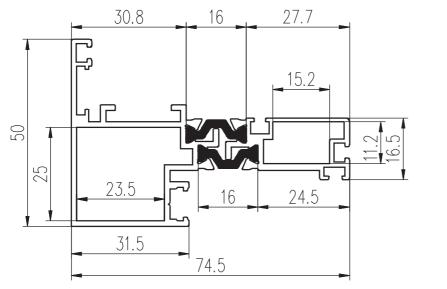



КПС 493 (3,723 кг/м.п.)

КП45377 (3,642 кг/м.п.)

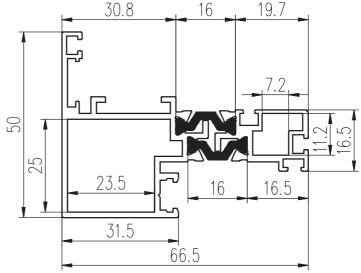


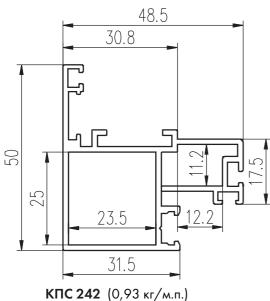
КП1511 (2,072 кг/м.п.)


КП45492 (1,677 кг/м.п.)

Профили скрытой створки

Профиль створки (ст/п 32 мм)



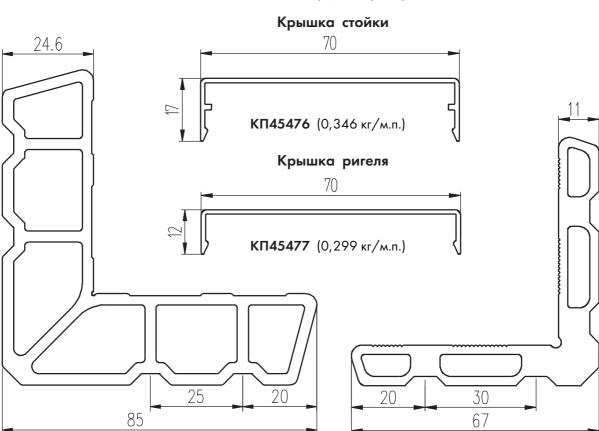

КПС 243 (0,07 кг/м.п.)

КПТ7435 (1,343 кг/м.п.) Вес ал. 1,226 кг/м.п.

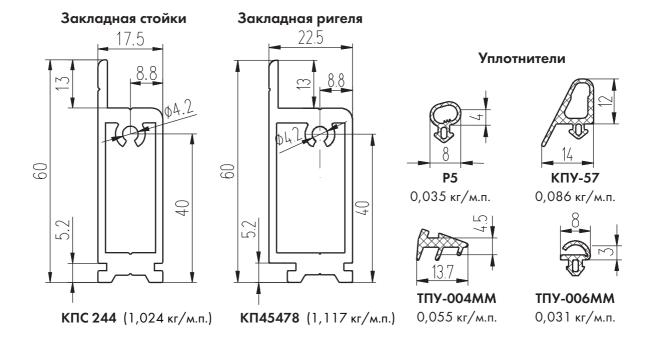
Профиль створки (ст/п 24 мм)

Профиль створки (ст. 6 мм)

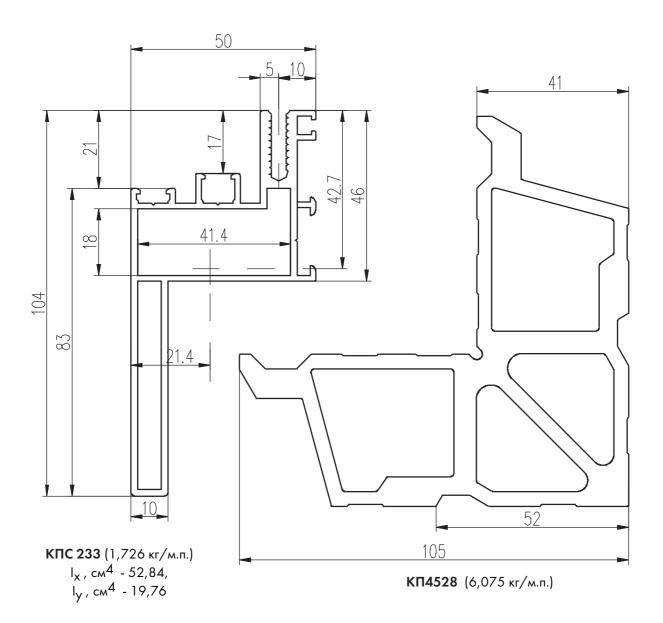
КПТ7434 (1,282 кг/м.п.) Вес ал. 1,165 кг/м.п.


КП45474 (0,441 кг/м.п.)

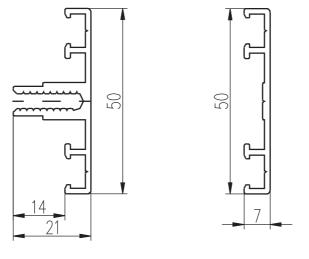
Профили скрытой створки



КП45475 (0,489 кг/м.п.)

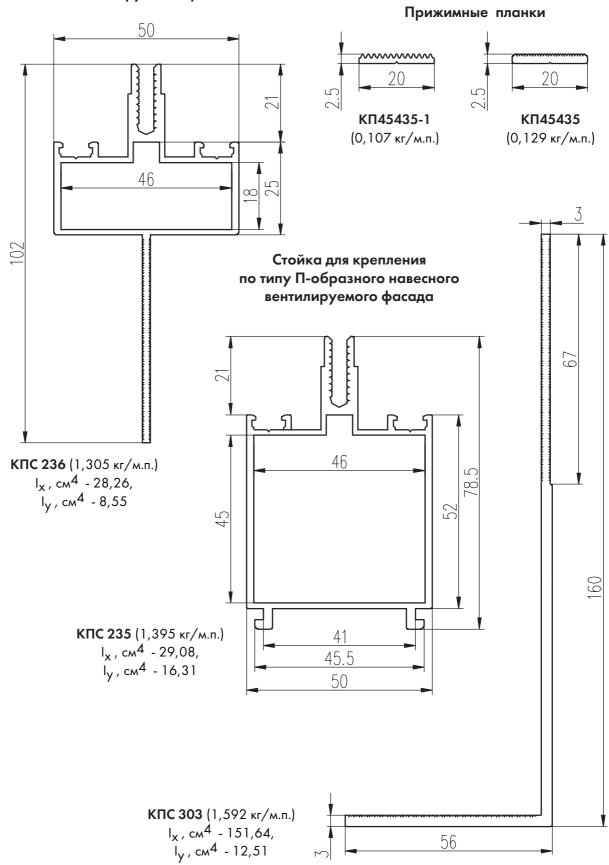


КП45543 (3,3 кг/м.п.)

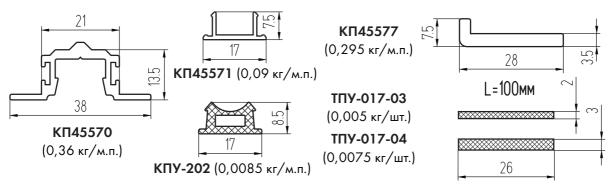

КП45522 (2,225 кг/м.п.)

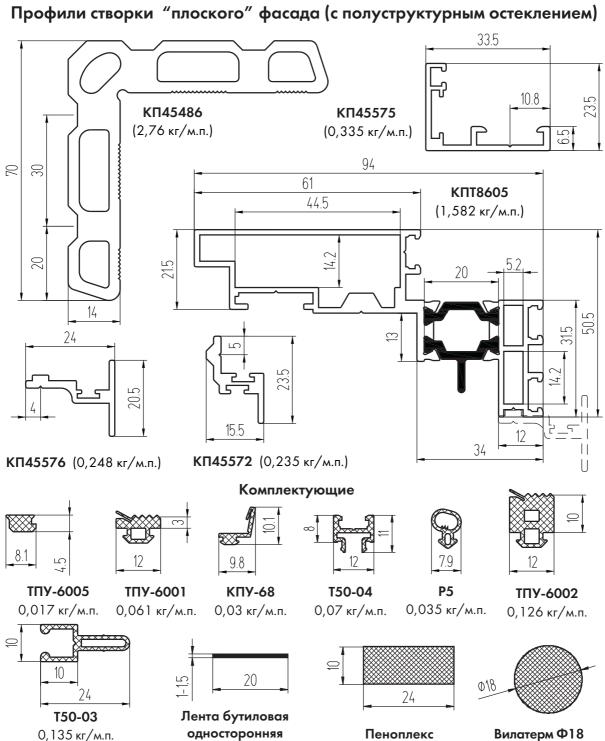
Профили тепло-холодного фасада ("теплая зона") КП50К ТХ

Профили холодной зоны

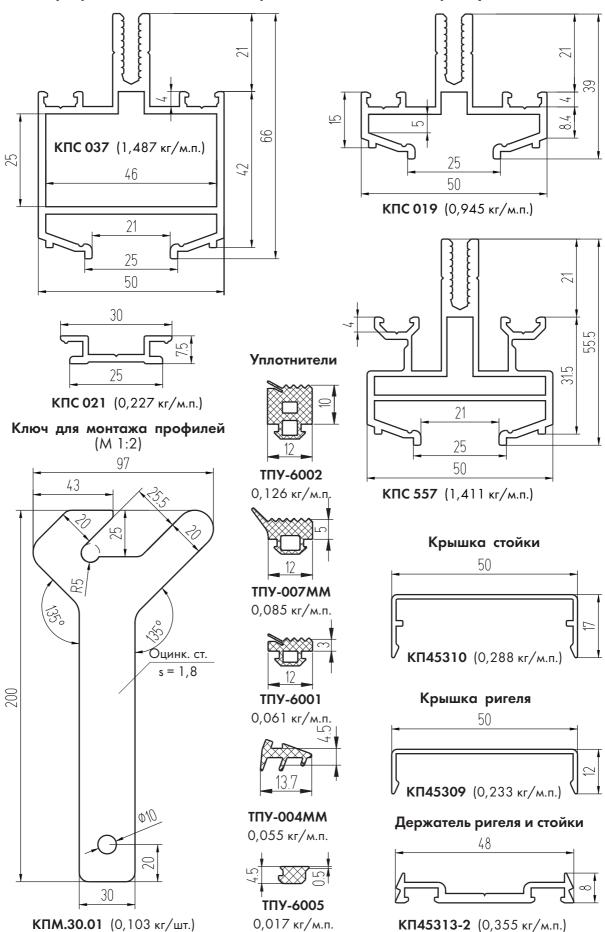

КП45453 (0,59 кг/м.п.)

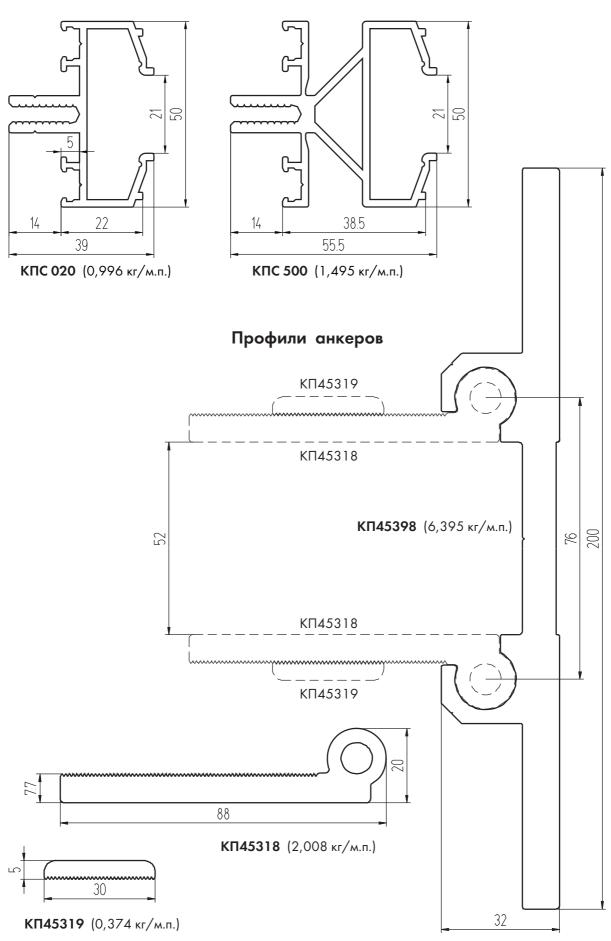
КП45452 (0,328 кг/м.п.)

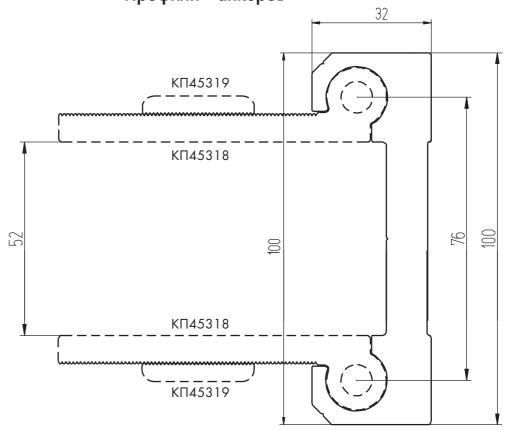


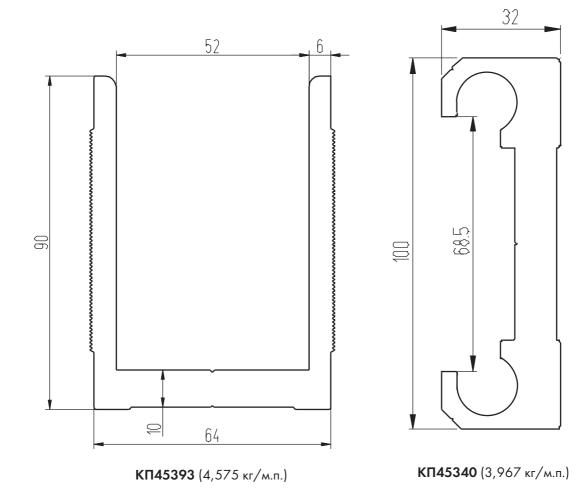

Профили тепло-холодного фасада ("холодная" зона) КП50К ТХ

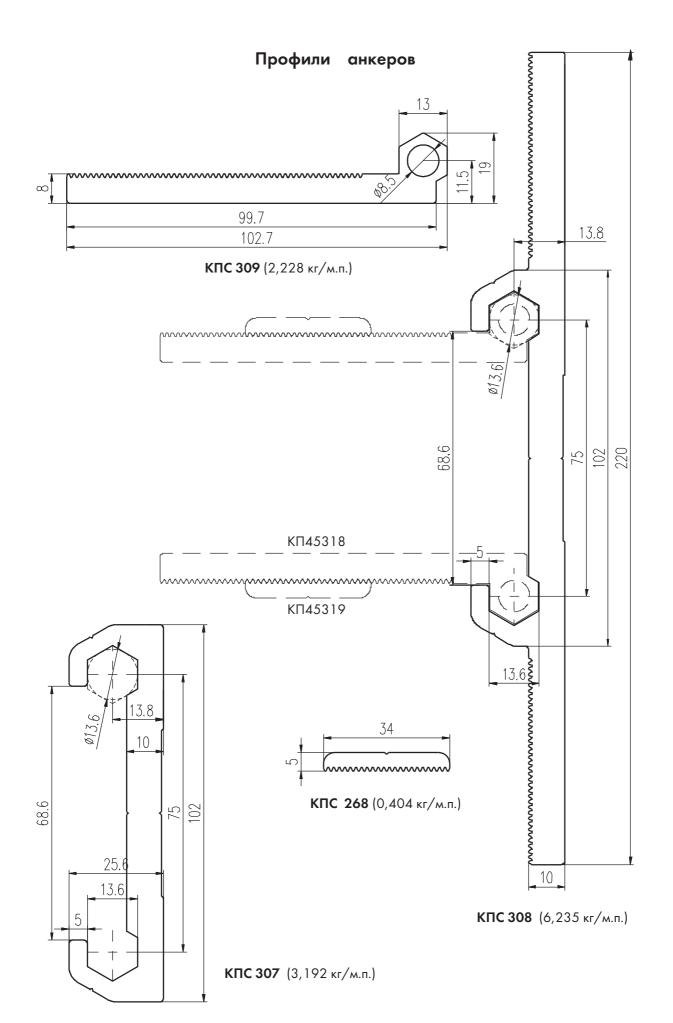
Стойка для крепления по типу Г-образного навесного вентилируемого фасада

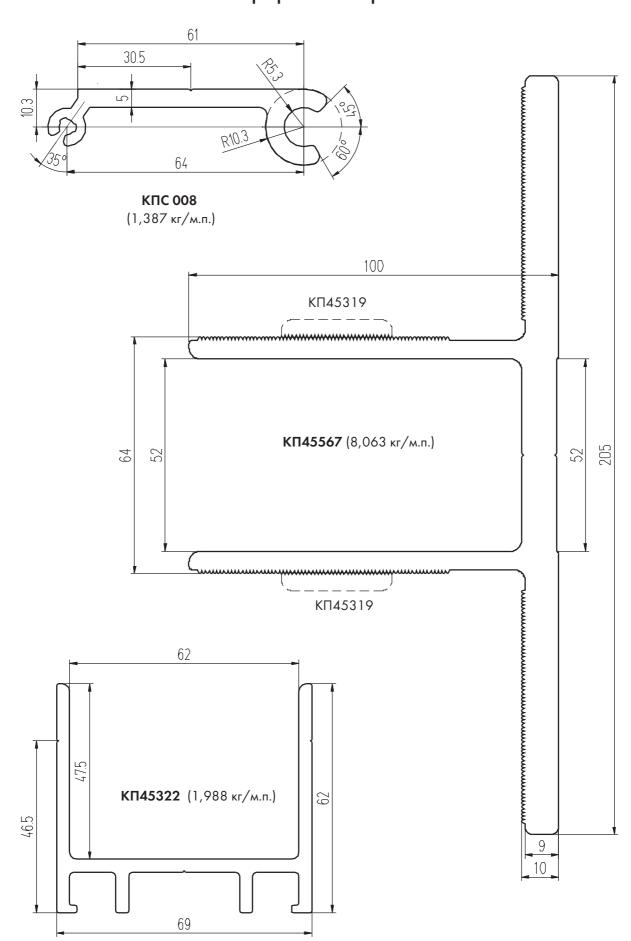

Профили "плоского" фасада (с полуструктурным остеклением) КП50КП

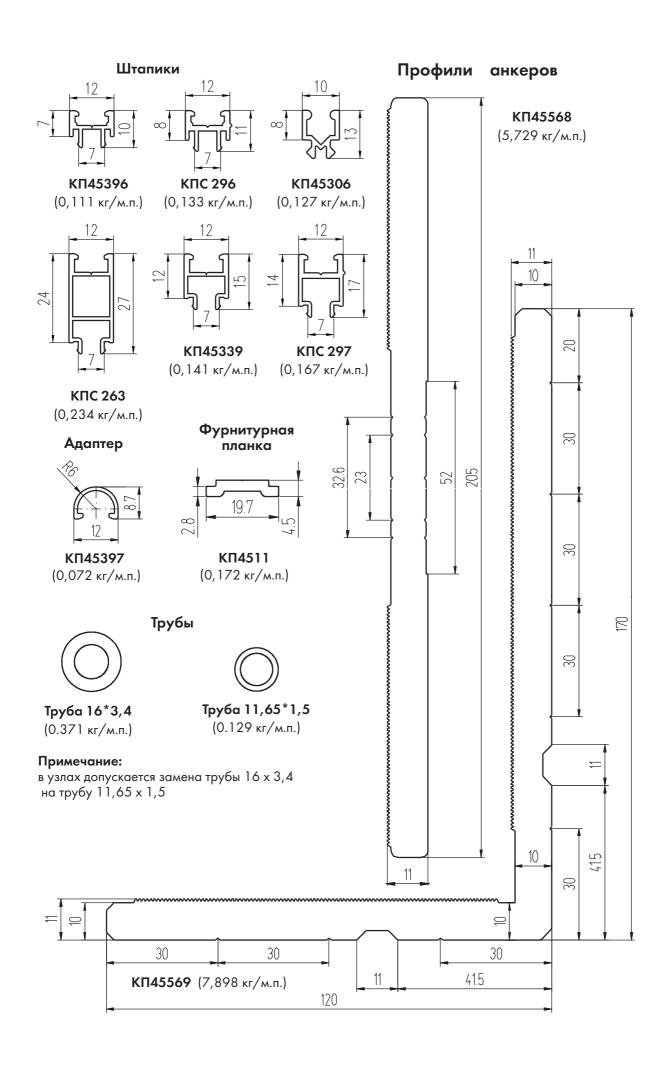


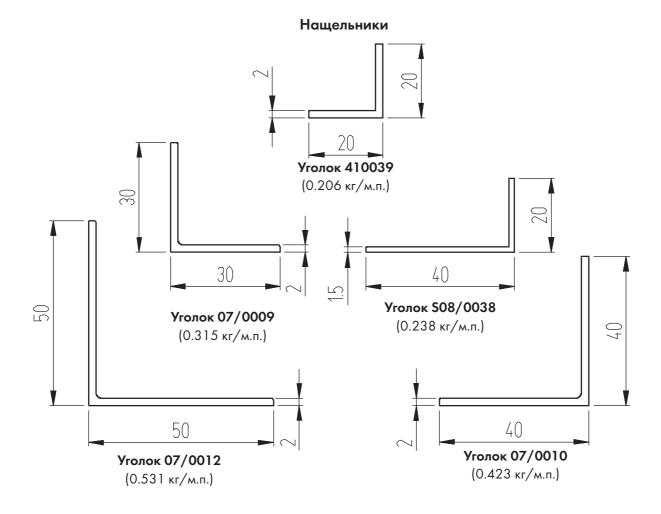

Профили для монтажа витражей по металлокаркасу КП50КМ

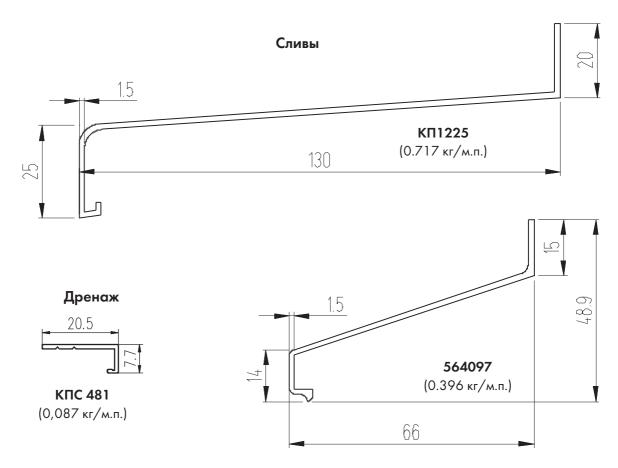


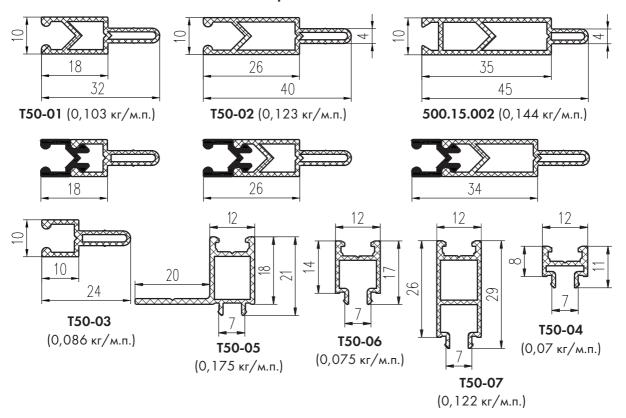

Профили для монтажа витражей по металлокаркасу КП50КМ

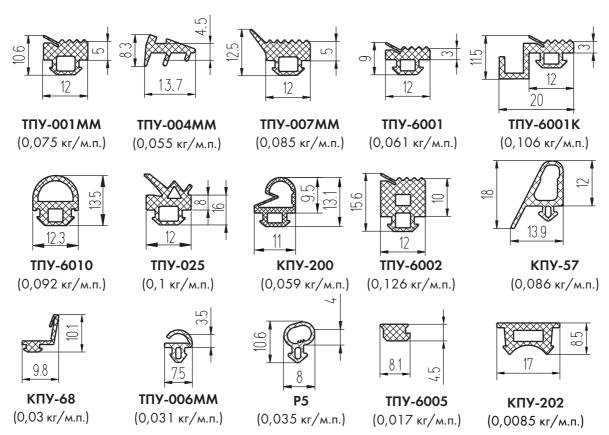

Профили анкеров





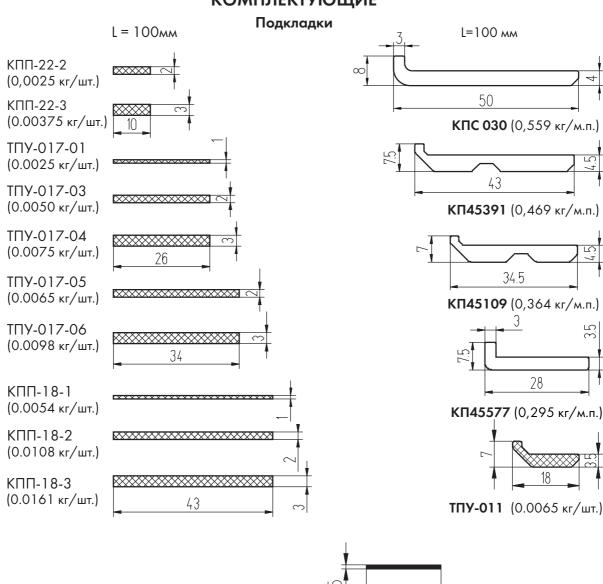

Профили анкеров

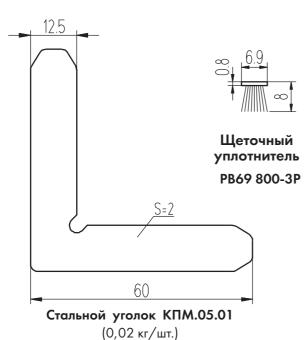


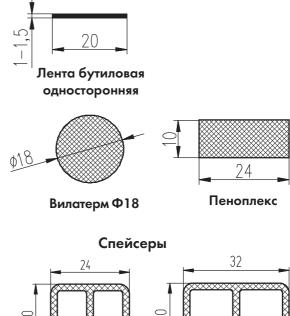

®

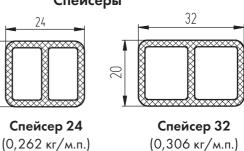
КОМПЛЕКТУЮЩИЕ

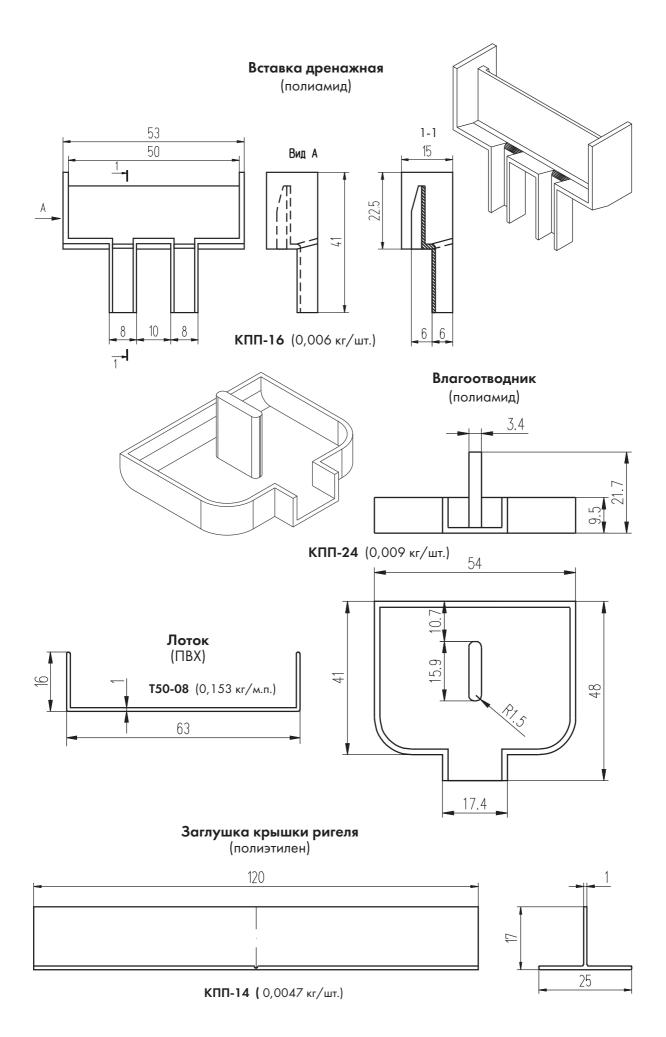
Термовставки

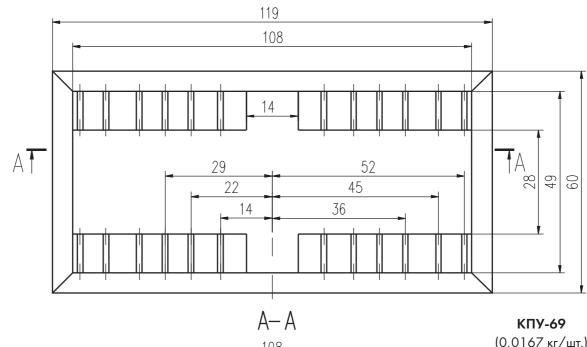


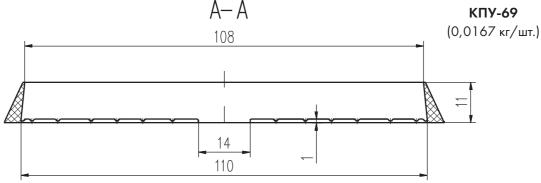

Уплотнители

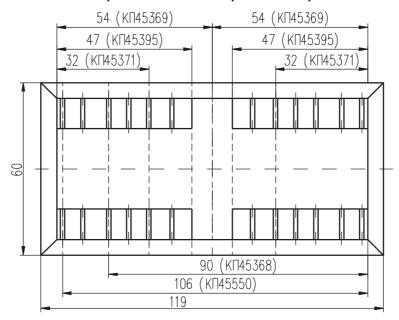



КОМПЛЕКТУЮЩИЕ









Уплотнитель КПУ-69 для ригелей

Схема резки КПУ-69 для различных ригелей

Шифр профиля	КП45371	КП45395	КП45369	КП45368	КП45550
Длина реза, мм	32	47	54	90	106
Масса, кг	0,0051	0,0065	0,0070	0,0102	0,0117

комплектующие изделия

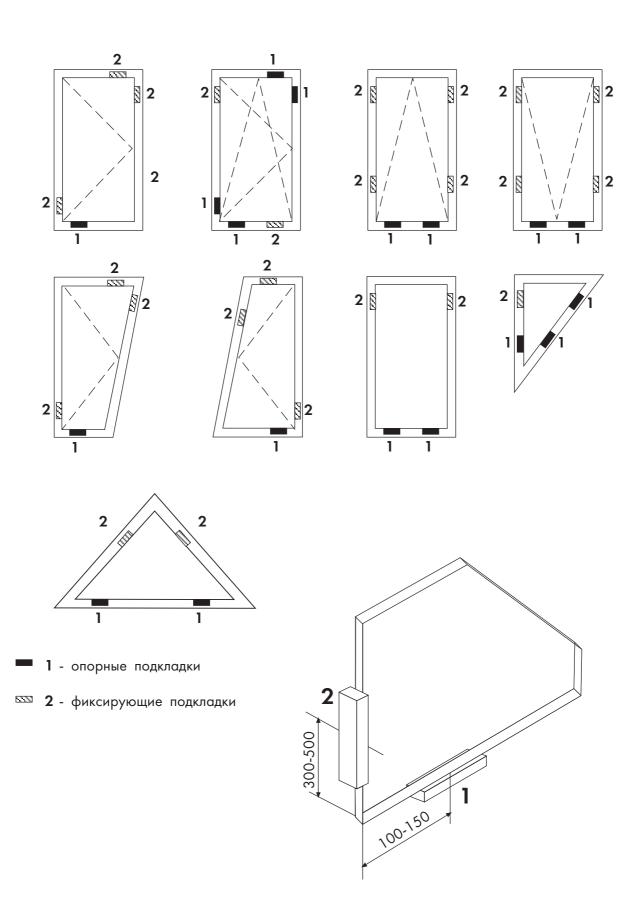
ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М КГ	ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М КГ
КПС 438	Закладная стоек КПС 437 и КПС 633		6,739	КПС 440	Закладная стойки КПС 439		6,246
КПС 427	Закладная стойки КПС 370		5,32	КПС 016	Закладная стоек КПСЗ70, КПС 014 и КПС 496		6,067
КПС 635	Закладная стойки КПС 634		5,851	КП45390	Закладная стойки КП45392		4,249
КПС 495	Закладная стойки КПС 494		5,355	КП45378	Закладная стоек, соединяемых под углом		5,253

комплектующие изделия

		цие издел		комплектующие издели:			
ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М КГ	ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М КГ
КПС 585	Закладная стойки КПС 584		4,059	КП45377	Закладная стоек КП45372, КПС 491		3,642
КПС 493	Закладная стоек КПС 491, КПС 492		3,723	КП45549	Закладная стоек КП45548, КПС 299		3,036
КП45564	Закладная компенсац. стоек КП45380 и КП45381		1,285	КПС 608	Закладная стоек КП45370, КП45563		2,797
КП1510	Закладная стоек КП45370, КП453563, КПС 298		2,679	КП45491	Верхняя закладная стоек КП45370, КП45563	27 6	2,056
КП1511	Закладная стоек КП45366, КП45376	[www]	2,072	КП45492	Верхняя закладная стоек КП453366, КП45376	200	1,677
КПС 041	Закладная ригеля		2,629	КПС 040	Закладная ригеля		1,495
КПС 038	Закладная ригеля		1,313	КП1336	Закладная ригеля		1,3
КП45102	Закладная ригеля		1,6	КПС 039	Закладная ригеля		1,365

КОМПЛЕКТУЮЩИЕ ИЗДЕЛИЯ

KOMI	JIEKI YOL	ter sisters	171/1	Комплектующие изделия			
ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М КГ	ШИФР	НАЗНАЧЕНИЕ	вид	MACCA 1Π.M KΓ
КПС 002 КПС 001	Компенсаци онная закладная ригеля		1,314 0,365	КП45489 КП45490	Компенсаци онная закладная ригеля		1,394 0,122
PB69 800-3P	Щеточный уплотнитель компенсаци онных стоек			ТПУ-6001К (пр-ва ООО "УЗЭМИК")	Уплотнитель витража с отводом конденсата	<u>J</u>	0,106
ТПУ-001 ММ	Уплотнитель витража		0,075	ТПУ-007ММ	Уплотнитель витража	7	0,085
ТПУ-6002	Уплотнитель витража	Ĥ	0,126	ТПУ-6001	Уплотнитель витража	7	0,061
ТПУ-025	Уплотнитель витража	*	0,1	ТПУ-6010 (пр-ва ООО "УЗЭМИК")	Уплотнитель витража	Ð	0,092
ТПУ-004ММ	Уплотнитель витража	H	0,055	ТПУ-6005	Уплотнитель витража под ригель		0,017
КПУ-200	Уплотнитель витража	4	0,059	КПУ-202	Декоратив. крышка для плоского фасада	Ħ	0,017
500.15.002	Термо- вставка		0,144	КПУ-69	Уплотнитель примыкания ригеля		0,017
T50-01	Термо- вставка	N	0,103	ТП50-03	Термо- вставка	H	0,086
ТП50-02	Термо- вставка		0,123	T50-07	Термо- вставка	Ħ	0,122
T50-06	Термо- вставка	H	0,075	ТП50-05	Термо- вставка		0,175
ТПУ-011	Подкладка фиксир. и опорная под стекло	L = 100 mm	1 шт. 0,0065 кг	ТП50-04	Термо- вставка	F 7	0,07



комплектующие изделия

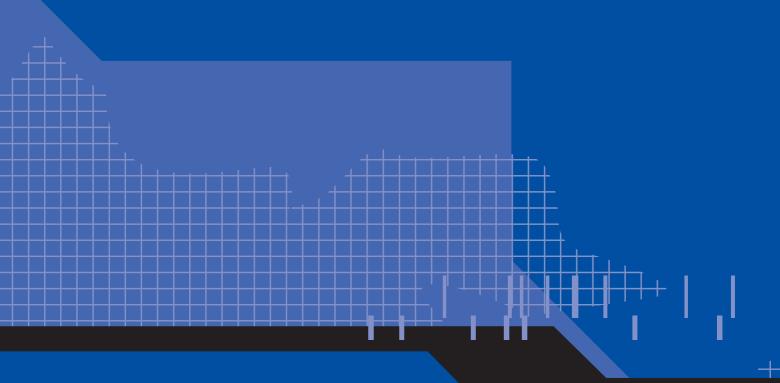
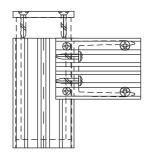
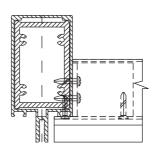

ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М (1ШТ.), КГ	ШИФР	НАЗНАЧЕНИЕ	вид	МАССА 1П.М (1ШТ.), КГ
ТПУ-017-01 ТПУ-017-03 ТПУ-017-04	Подкладки под стекло 6 мм и стекло- пакет 24 мм	L = 100 mm	1 шт. 0,0025 0,005 0,0075	КПП-18-1 КПП-18-2 КПП-18-3	Подкладки под стекло- пакет 40 и 42 мм	L = 100 mm	1 шт. 0,0054 0,108 0,0161
ΤΠУ-01 <i>7</i> -05 ΤΠУ-01 <i>7</i> -06	Подкладки под стекло- пакет 32 мм	L = 100 mm	1 шт. 0,0065 0,0098	КПП-22-2 КПП-22-3	Подкладки под стекло 6 мм	L = 100 mm	1 шт. 0,0025 0,003 <i>7</i> 5
КП45577	Подкладка опорная под стекло, стеклопакет	L = 100 mm	1 шт. 0,03 кг	КП45109	Подкладка опорная под стекло-пакет 24	L = 100 mm	1 шт. 0,0364 кг
КПС 030	Подкладка опорная под стеклопакет 40,42	L = 100 mm	1 шт. 0,056 кг	КП45391	Подкладка опорная под стеклопакет 32	L = 100 мм	1 шт. 0,047 кг
	Спейсер 24		0,262		Спейсер 32		0,306
КПП-24	Влагоотвод ник		1 шт. 0,009 кг	КПП-16	Вставка дренажная		1 шт. 0,006 кг
T50-08	Дренаж		0,153	КПС 481	Дренаж, 40мм		1 шт. 0,003 кг
				КПП-14	Заглушка крышки ригеля на наклонной плоскости		1 шт. 0,00 <i>47</i> кг

Схема размещения подкладок под заполнение

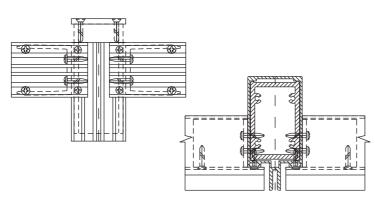




ТИПОВЫЕ СБОРОЧНЫЕ УЗЛЫ

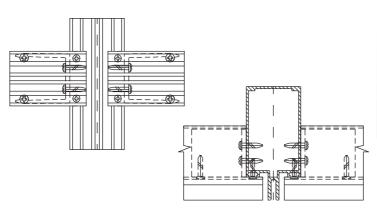
Крепление ригеля 45369 к стойке 45370

КТУ-70-69во



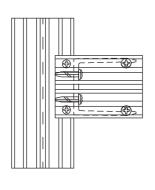
Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45370	1	1.852					
КП45369	1	1.445	KP-1	1	0.294		
КП1336-44-1	1	0.057					
КП1510-100-3	1	0.244					
Уплотнители	Кол-во	Масса, кг					
ТПУ-6005 L=50мм	1	0.001					

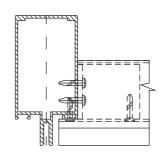
Метизы	Мас	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	4	0.006	0.613	0.301
DIN 7982 A2 PZ 3.5x16	4	0.004		


КТУ-70-69вд

	Детали								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг				
КП45370	1	1.852							
КП45369	2	1.445	KP-1	1	0.294				
КП1336-44-1	2	0.114							
КП1510-100-3	1	0.244							
Уплотнители	Кол-во	Масса, кг							
ТПУ-6005 L=50мм	2	0.002							

Метизы	Мас	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	0.682	0.358
DIN 7982 A2 PZ 3.5x16	8	0.008		

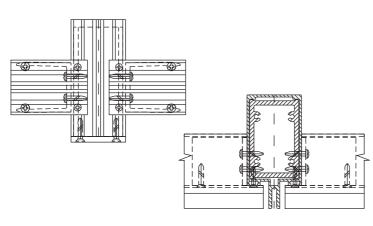

КТУ-70-69сд



Детапи								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45370	1	1.852						
КП45369	2	1.445						
КП1336-44-1	2	0.114						
Уплотнители	Кол-во	Масса. кг						
ТПУ-6005 L=50мм	2	0.002						

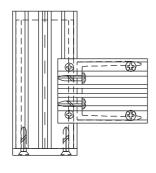
Метизы			Мас	са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7981 A2 PZ 4.2x19	8	0.012	0.138	0.114
DIN 7982 A2 PZ 3.5x16	8	0.008		

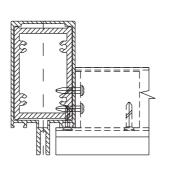
KTY-70-69co



Детали								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45370	1	1.852						
КП45369	1	1.445						
КП1336-44-1	1	0.057						
Уплотнители	Кол-во	Масса. кг						
ТПУ-6005 L=50мм	1	0.001						

Метизы				Масса, нг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия		
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	4	0.006 0.004	0.069	0.057		

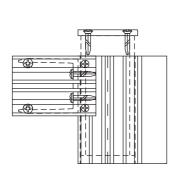

КТУ-70-69нд

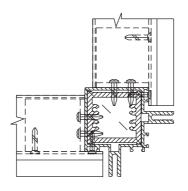


Детали								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45370	1	1.852						
КП45369	2	1.445	KP-1	1	0.294			
КП1336-44-1	2	0.114						
КП1510-100-1	1	0.268						
Уплотнители	Кол-во	Масса, кг						
ТПУ-6005 L=50мм	2	0.002						

Метизы	Масса, кг			
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	0.706	0.382
DIN 7982 A2 PZ 3.5x16	8	0.008		

КТУ-70-69но

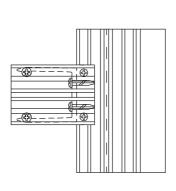


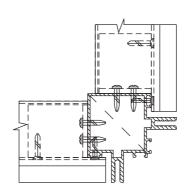

Детали								
Алюминиевые	Кол-во	Масса. кг	Стальные	Кол-во	Масса, кг			
КП45370	1	1.852						
КП45369	1	1.445	KP-1	1	0.294			
КП1336-44-1	1	0.057						
КП1510-100-1	1	0.268						
Уплотнители	Кол-во	Масса, кг						
ТПУ-6005 L=50мм	1	0.001						

Метизы				Масса, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия		
DIN 7982 A2 PZ 4.2x19	4	0.006				
DIN 7981 A2 PZ 4.2x19	4	0.006	0.637	0.325		
DIN 7982 A2 PZ 3.5x16	4	0.004				

Крепление ригеля 45369 к стойке 45376

КТУ-76-69в

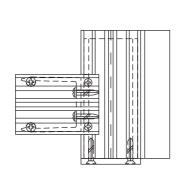


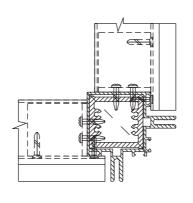


Детали								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45376	1	1.894						
КП45369	2	1.445	KP-2	1	0.239			
КП1336-44-1	2	0.114						
КП1511-100-4	1	0.198						
Уплотнители	Кол-во	Масса, кг						
ТПУ-6005 L=50мм	2	0.002						

Метизы	Масса, кг			
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	0.581	0.312
DIN 7982 A2 PZ 3.5x16	8	0.008		

KTY-76-69c





Детали								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45376	1	1.894						
КП45369	2	1.445						
КП1336-44-1	2	0.114						
Уплотнители	Кол-во	Масса, кг						
ТПУ-6005 L=50мм	2	0.002						

Метизы	Масса, кг			
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	8 8	0.012 0.008	0.138	0.114

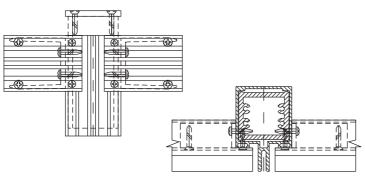
КТУ-76-69н


Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса. кг		
КП45376	1	1.894					
КП45369	2	1.445	KP-2	1	0.239		
КП1336-44-1	2	0.114					
КП1511-100-1	1	0.207					
Уплотнители	Кол-во	Масса, кг					
ТПУ-6005 L=50мм	2	0.002					

Метизы	Мас	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	0.59	0.321
DIN 7982 A2 PZ 3.5x16	8	0.008		

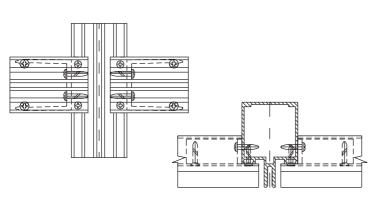
(E)

Крепление ригеля 45371 к стойке 45366


КТУ-66-71во

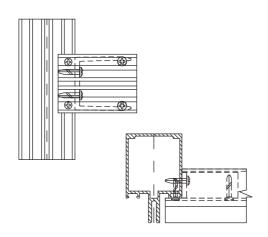
	Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45366	1	1.549						
КП45371	1	1.186	KP-2	1	0.239			
КП1336-22	1	0.028						
КП1511-100-3	1	0.197						
Уплотнители	Кол-во	Масса, кг						
ТПУ-6005 L=50мм	1	0.001						

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	2	0.003	0.479	0.225
DIN 7982 A2 PZ 3.5x16	4	0.004		


КТУ-66-71вд

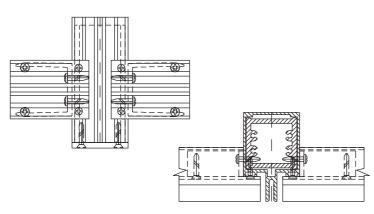
Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45366 КП45371 КП1336-22 КП1511-100-3	1 2 2 1	1.549 1.186 0.056 0.197	KP-2	1	0.239	
Уплотнители	Кол-во	Масса, кг				
ТПУ-6005 L=50мм	2	0.002				

	Метизы	Масса, кг			
•	Обозначение	Кол-во	Масса, кг	Общая	Алюминия
	DIN 7982 A2 PZ 4.2x19	4	0.006		
	DIN 7981 A2 PZ 4.2x19	4	0.006	0.516	0.253
	DIN 7982 A2 PZ 3.5x16	8	0.008		


КТУ-66-71сд

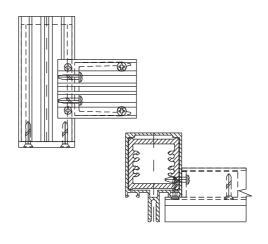
Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45366	1	1.549					
КП45371	2	1.186					
КП1336-22	2	0.056					
Уплотнители	Кол-во	Масса. кг					
ТПУ-6005 L=50мм	2	0.002					

Метизы	Масса, кг			
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	4 8	0.006	0.074	0.056


KTY-66-71co

Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45366	1	1.549					
КП45371	1	1.186					
КП1336-22	1	0.028					
Уплотнители	Кол-во	Масса. кг					
ТПУ-6005 L=50мм	1	0.001					

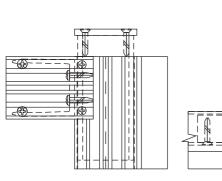
Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	2 4	0.003 0.004	0.037	0.028

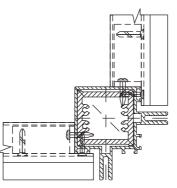

КТУ-66-71нд

Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45366 КП45371 КП1336-22 КП1511-100-1	1 2 2 1	1.549 1.186 0.056 0.207	KP-2	1	0.239		
Уплотнители	Кол-во	Масса, кг					
ТПУ-6005 L=50мм	2	0.002					

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	4	0.006	0.526	0.263
DIN 7982 A2 PZ 3.5x16	8	0.008		

КТУ-66-71но

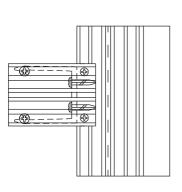


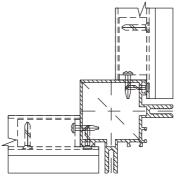

Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса. кг		
КП45366	1	1.549					
КП45371	1	1.186	KP-2	1	0.239		
КП1336-22	1	0.028					
КП1511-100-1	1	0.207					
Уплотнители	Кол-во	Масса, кг					
ТПУ-6005 L=50мм	1	0.001					

	Метизы				са, кг
	Обозначение	Кол-во	Масса, кг	Общая	Алюминия
ľ	DIN 7982 A2 PZ 4.2x19	4	0.006		
l	DIN 7981 A2 PZ 4.2x19	2	0.003	0.489	0.235
	DIN 7982 A2 PZ 3.5x16	4	0.004		

Крепление ригеля 45371 к стойке 45376

КТУ-76-71в

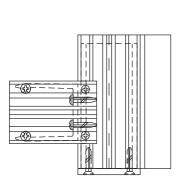


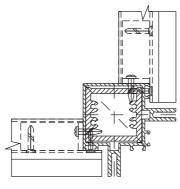


Детали								
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг			
КП45376	1	1.894						
КП45371	2	1.186	KP-2	1	0.239			
КП1336-22	2	0.056						
КП1511-100-4	1	0.198						
Уплотнители	Кол-во	Масса. кг						
ТПУ-6005 L=50мм	2	0.002						

Метизы				Масса, нг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия		
DIN 7982 A2 PZ 4.2x19	4	0.006				
DIN 7981 A2 PZ 4.2x19	4	0.006	0.517	0.254		
DIN 7982 A2 PZ 3.5x16	8	0.008				

KTY-76-71c

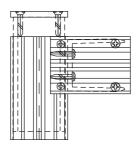


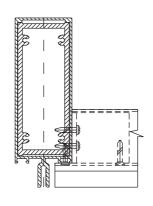


Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45376	1	1.894					
КП45371	2	1.186					
КП1336-22	2	0.056					
Уплотнители	Кол-во	Масса. кг					
ТПУ-6005 L=50мм	2	0.002					

Метизы				Масса, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия		
DIN 7981 A2 PZ 4.2x19	4	0.006	0.074	0.056		
DIN 7982 A2 PZ 3.5x16	8	0.008				

КТУ-76-71н

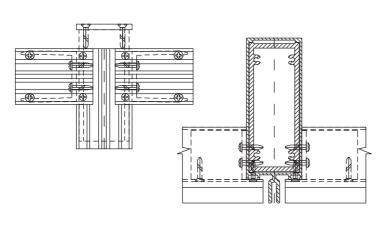



Детали							
Алюминиевые	Кол-во	Масса. кг	Стальные	Кол-во	Масса, кг		
КП45376	1	1.894					
КП45371	2	1.186	KP-2	1	0.239		
КП1336-22	2	0.056					
КП1511-100-1	1	0.207					
Уплотнители	Кол-во	Масса, кг					
ТПУ-6005 L=50мм	2	0.002					

Метизы				Масса, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия		
DIN 7982 A2 PZ 4.2x19	4	0.006				
DIN 7981 A2 PZ 4.2x19	4	0.006	0.526	0.263		
DIN 7982 A2 PZ 3.5x16	8	0.008				

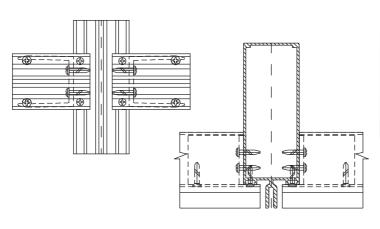
Крепление ригеля 45369 к стойке 45372

КТУ-72-69во



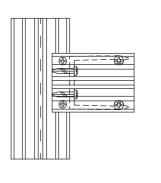
Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45372	1	2.304					
КП45369	1	1.445	KP-4	1	0.383		
КП1336-44-1	1	0.057					
КП45377-100-3	1	0.334					
Уплотнители	Кол-во	Масса. кг					
ТПУ-6005 L=50мм	1	0.001					

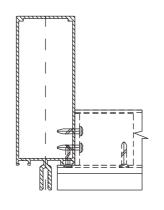
Метизы				Масса, нг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия		
DIN 7982 A2 PZ 4.2x19	4	0.006				
DIN 7981 A2 PZ 4.2x19	4	0.006	0.792	0.391		
DIN 7982 A2 PZ 3.5x16	4	0.004				


КТУ-72-69вд

	Детали						
Алюм	иниевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
	-	1 2 2 1	2.304 1.445 0.114 0.334	KP-4	1	0.383	
Упло	тнители	Кол-во	Масса, кг				
ТПУ-6	i005 L=50мм	2	0.002				

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19 DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	4 8 8	0.006 0.012 0.008	0.861	0.448

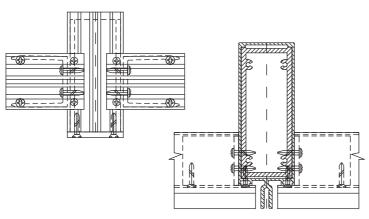

КТУ-72-69сд



Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45372	1	2.304					
КП45369	2	1.445					
КП1336-44-1	2	0.114					
Уплотнители	Кол-во	Масса. кг					
ТПУ-6005 L=50мм	2	0.002					

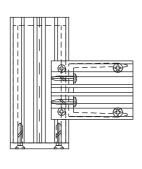
Метизы				Масса, кг	
Обозначение	Кол-во	Масса, кг	Общая	Алюминия	
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	8 8	0.012 0.008	0.138	0.114	

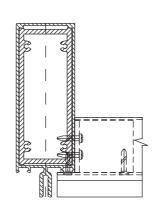
KTY-72-69co



Детали							
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг		
КП45372	1	2.304					
КП45369	1	1.445					
КП1336-44-1	1	0.057					
Уплотнители	Кол-во	Масса. кг					
ТПУ-6005 L=50мм	1	0.001					

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7981 A2 PZ 4.2x19	4	0.006	0.069	0.057
DIN 7982 A2 PZ 3.5x16	4	0.004		

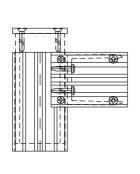

КТУ-72-69нд

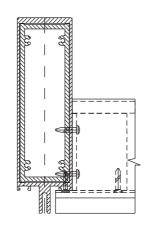


Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45372	1	2.304				
КП45369	2	1.445	KP-4	1	0.383	
КП1336-44-1	2	0.114				
КП45377-100-1	1	0.364				
Уплотнители	Кол-во	Масса, кг				
ТПУ-6005 L=50мм	2	0.002				

Метизы	Mac	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	0.891	0.478
DIN 7982 A2 PZ 3.5x16	8	0.008		

КТУ-72-69но

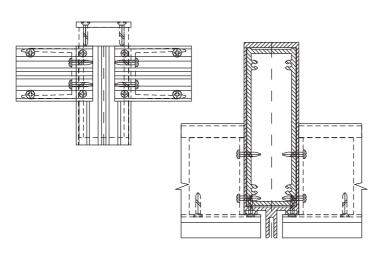



Детали						
Алюминиевые	Кол-во	Масса. кг	Стальные	Кол-во	Масса, кг	
КП45372	1	2.304				
КП45369	1	1.445	KP-4	1	0.383	
КП1336-44-1	1	0.057				
КП45377-100-1	1	0.364				
Уплотнители	Кол-во	Масса, кг				
ТПУ-6005 L=50мм	1	0.001				

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		2 4 2 4
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	4	0.006 0.004	0.822	0.421

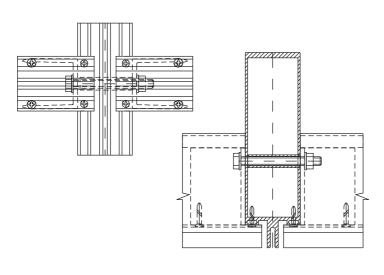
Крепление ригеля 45368 к стойке 45392

КТУ-92-68во



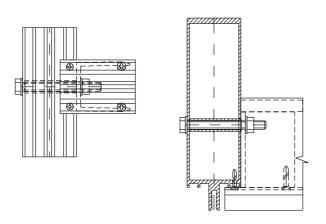
Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45392	1	3.276				
КП45368	1	1.973	KP-5	1	0.436	
КП1336-70-2	1	0.09				
КП45390-100-3	1	0.397				
Уплотнители	Кол-во	Масса. кг				
ТПУ-6005 L=50мм	1	0.001				

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	4	0.006	0.941	0.487
DIN 7982 A2 PZ 3.5x16	4	0.004		


КТУ-92-68вд

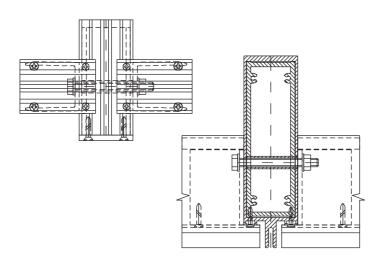
Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45392	1	3.276				
КП45368	2	1.973	KP-5	1	0.436	
КП1336-70-2	2	0.18				
КП45390-100-3	1	0.397				
Уплотнители	Кол-во	Масса, кг				
ТПУ-6005 L=50мм	2	0.002				

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	1.043	0.577
DIN 7982 A2 PZ 3.5x16	8	0.008		


КТУ-92-68сд

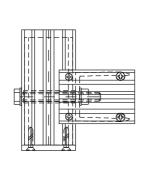
Детали						
Алюминиевые			Стальные	Кол-во	Масса. кг	
КП45392	1	3.276				
КП45368	2	1.973				
КП1336-70-1	2	0.182				
Труба Ø11.65x1.5x48	1	0.006				
Уплотнители	Кол-во	Масса, кг				
ТПУ-6005 L=50мм	2	0.002				

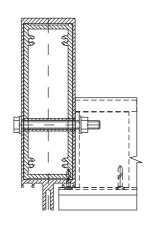
Метизы	Мас	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
Болт DIN 931 A2 M8x80	1	0.035		
Гайка DIN 934 A2 M8	1	0.005	0.245	0.188
Шайба DIN 125 A2 M8	2	0.005		
DIN 7982 A2 PZ 3.5x16	8	0.008		


KTY-92-68co

Детали						
Алюминиевые	Кол-во	Масса. кг	Стальные	Кол-во	Масса, кг	
КП45392	1	3.276				
КП45368	1	1.973				
КП1336-70-1	1	0.091				
Tpy6a Ø11.65x1.5x48	1	0.006				
Уплотнители	Кол-во	Масса. кг				
ТПУ-6005 L=50мм	1	0.001				

Метизы				Масса, нг	
Обозначение	Кол-во	Масса, кг	Общая	Алюминия	
Болт DIN 931 A2 M8x80	1	0.035			
Гайка DIN 934 A2 M8	1	0.005	0.148	0.097	
Шайба DIN 125 A2 M8	2	0.005			
DIN 7982 A2 PZ 3.5x16	4	0.004			

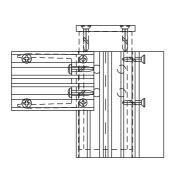

КТУ-92-68нд

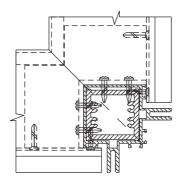


Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45392	1	3.276				
КП45368	2	1.973	KP-5	1	0.436	
КП1336-70-1	2	0.182				
КП45390-100-1	1	0.425				
Труба Ø11.65х1.5х48	1	0.006				
Уплотнители	Кол-во	Масса. кг				
ТПУ-6005 L=50мм	2	0.002				

Метизы	Мас	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
Болт DIN 931 A2 M8x80	1	0.035		
Гайка DIN 934 A2 M8	1	0.005	1.112	0.613
Шайба DIN 125 A2 M8	2	0.005		
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7982 A2 PZ 3.5x16	8	0.008		

КТУ-92-68но

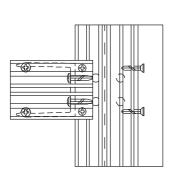


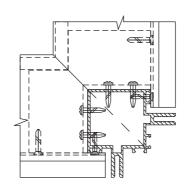

Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45392	1	3.276				
КП45368	1	1.973	KP-5	1	0.436	
КП1336-70-1	1	0.091				
КП45390-100-1	1	0.425				
Труба Ø11.65х1.5х48	1	0.006				
Уплотнители	Кол-во	Масса. кг				
ТПУ-6005 L=50мм	1	0.001				

Метизы	Мас	са, кг		
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
Болт DIN 931 A2 M8x80	1	0.035		
Гайка DIN 934 A2 M8	1	0.005	1.015	0.522
Шайба DIN 125 A2 M8	2	0.005		
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7982 A2 PZ 3.5x16	4	0.004		

Крепление ригеля 45368 к стойке 45376

КТУ-76-68в

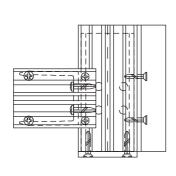


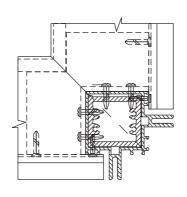


Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45376	1	1.894				
КП45368	2	1.973	KP-2	1	0.239	
КП1336-70-4	2	0.168				
КП1511-100-4	1	0.198				
Уплотнители	Кол-во	Масса. КГ				
ТПУ-6005 L=50мм	2	0.002				

Метизы				Масса, кг	
Обозначение	Кол-во	Масса, кг	Общая	Алюминия	
DIN 7982 A2 PZ 4.2x19	4	0.006			
DIN 7981 A2 PZ 4.2x19	8	0.012	0.635	0.366	
DIN 7982 A2 PZ 3.5x16	8	0.008			

KTY-76-68c



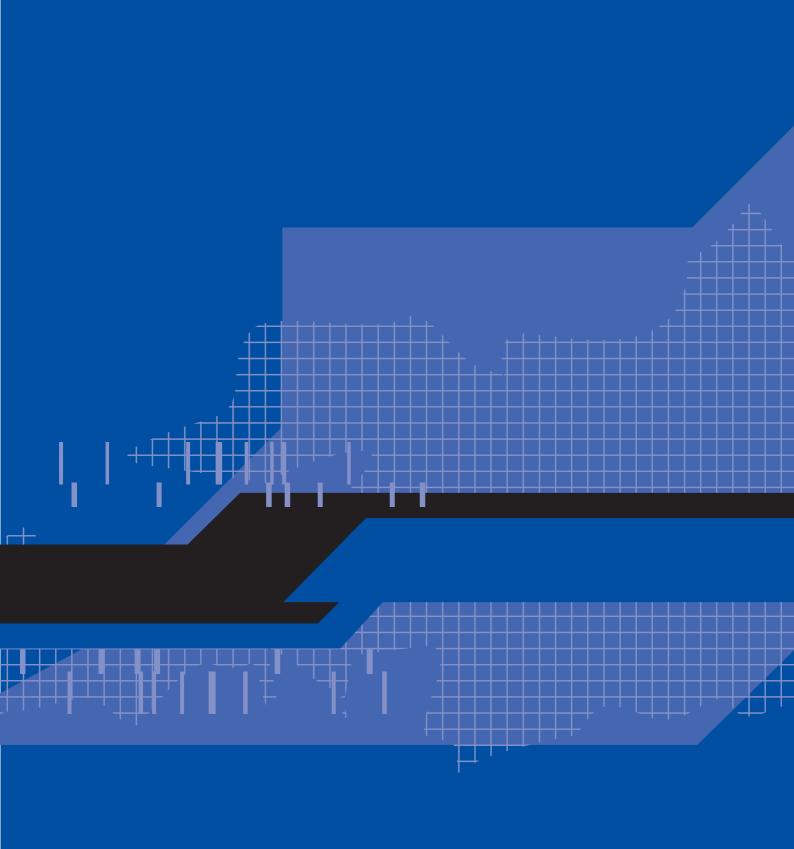


	Детали						
Алюмин	иевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45376		1	1.894				
КП45368		2	1.973				
КП1336-70)-4	2	0.168				
Уплотни	тели	Кол-во	Масса, кг				
ТПУ-6005	L=50мм	2	0.002				

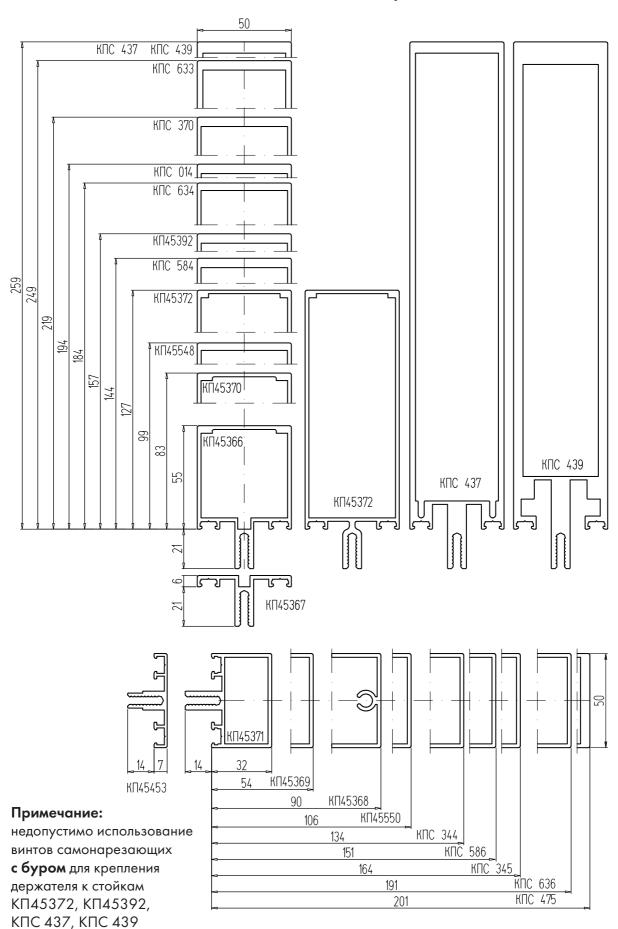
Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7981 A2 PZ 4.2x19 DIN 7982 A2 PZ 3.5x16	8 8	0.012 0.008	0.192	0.168

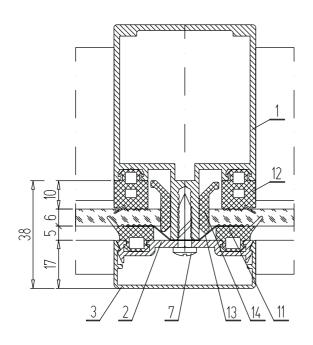
КТУ-76-68н

Детали						
Алюминиевые	Кол-во	Масса, кг	Стальные	Кол-во	Масса, кг	
КП45376	1	1.894				
КП45368	2	1.973	KP-2	1	0.239	
КП1336-70-4	2	0.168				
КП1511-100-1	1	0.207				
Уплотнители	Кол-во	Масса, кг				
ТПУ-6005 L=50мм	2	0.002				

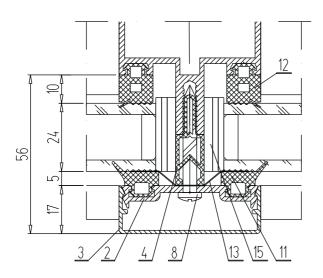

Метизы				са, кг
Обозначение	Кол-во	Масса, кг	Общая	Алюминия
DIN 7982 A2 PZ 4.2x19	4	0.006		
DIN 7981 A2 PZ 4.2x19	8	0.012	0.644	0.375
DIN 7982 A2 PZ 3.5x16	8	0.008		

Основные сечения витража

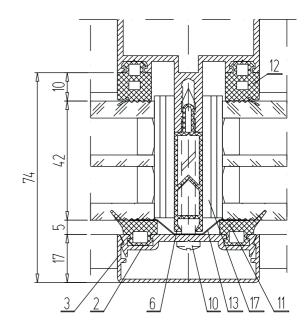


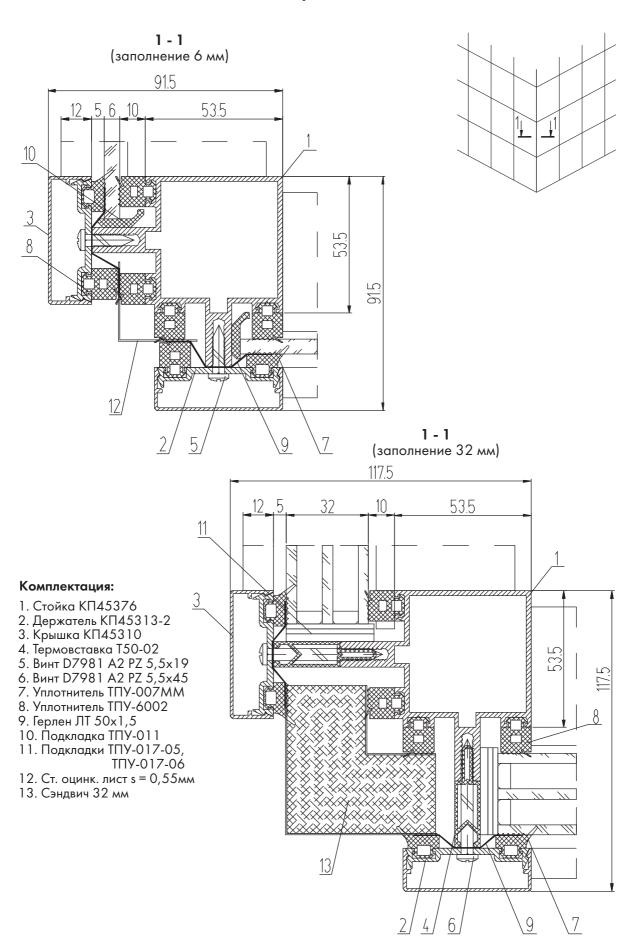


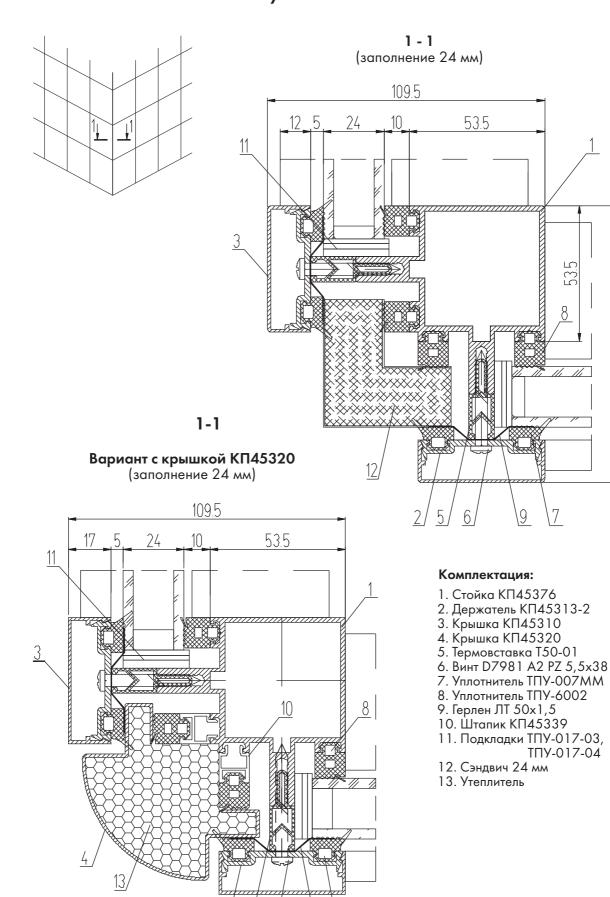

Линейка основных стоек и ригелей


Сечения основных промежуточных стоек

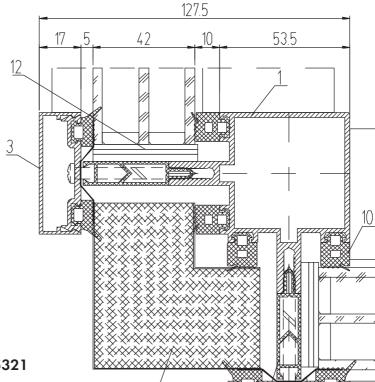
Комплектация:


- 1. Стойка
- 2. Держатель КП45313-2
- 3. Крышка КП45310
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- Термовставка 500.15.002
- 7. Винт D7981 A2 PZ 5,5x19
- 8. Винт D7981 A2 PZ 5,5x38
- 9. Винт D7981 A2 PZ 5,5x45
- 10. Винт D7981 A2 PZ 5,5x50
- 11. Уплотнитель ТПУ-007ММ
- 12. Уплотнитель ТПУ-6002
- 13. Герлен ЛТ 50х1,5
- 14. Подкладка ТПУ-011
- 15. Подкладки ТПУ-017-03,ТПУ-017-04
- 16. Подкладки ТПУ-017-05, ТПУ-017-06
- 17. Подкладки КПП-18-2, КПП-18-3

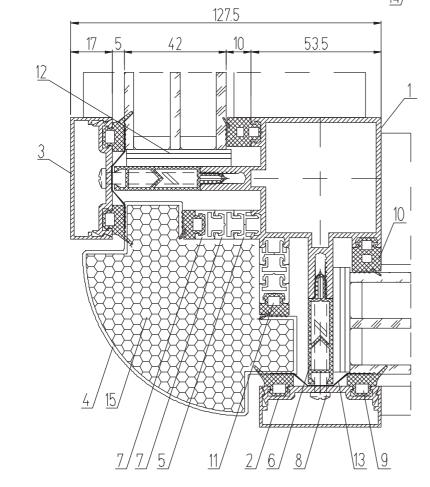



Примечания:

- Держатели и все ответственные детали крепятся винтами из нержавеющей стали с шагом 250 мм. Остальные детали (нащельники, спейсеры и т. п.) допускается крепить оцинкованными винтами с шагом не более 500 мм.
- При установке стеклопакетов толщиной 24 мм и более рекомендуется дополнительно крепить вертикальные держатели винтами из нержавеющей стали с буром DIN 7504-K A2 PZ с шагом 1 м. (См. инструкцию по монтажу).



9

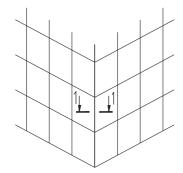

109

1 - 1 (заполнение 42 мм)

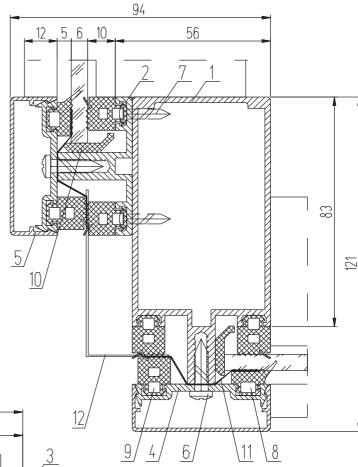
1 - 1 Вариант с крышкой КП45321

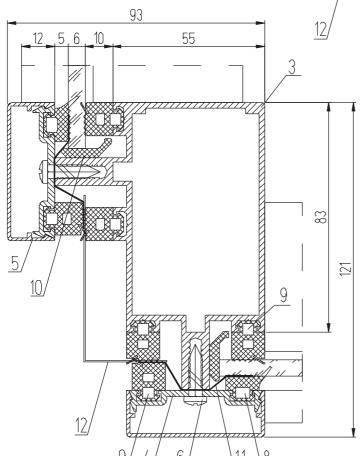
(заполнение 42 мм)

Комплектация:

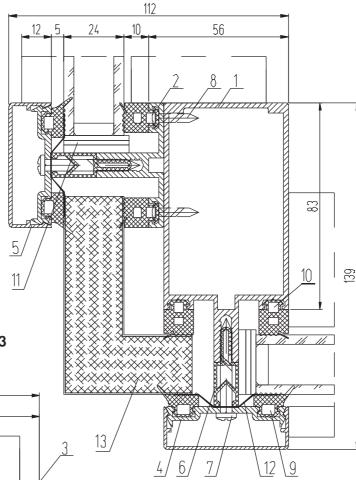

- 1. Стойка КП45376
- 2. Держатель КП45313-2
- 3. Крышка КП45310
- 4. Крышка КП45321 5. Штапик КП45397
- Термовставка Т500.15.002
- 7. Штапик Т50-04 (или КПС 296)

13 9

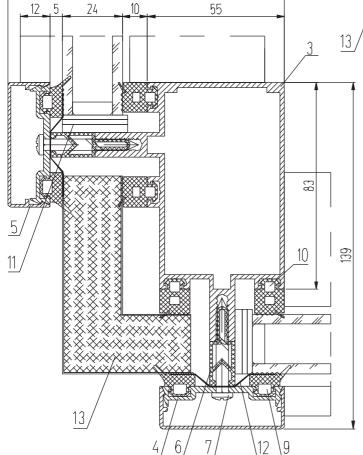

- 8. Винт D7981 A2 PZ 5,5x50
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6002
- 11. Уплотнитель ТПУ-001ММ
- 12. Подкладки КПП-18-2, КПП-18-3
- 13. Герлен ЛТ 50х1,5
- 14. Сэндвич 42 мм
- 15. Утеплитель

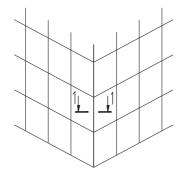


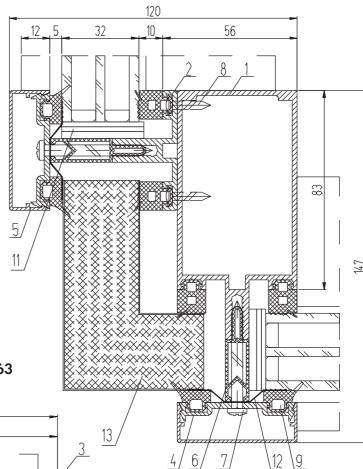
1-1 Вариант со стойками КП45370 и КП45367 (заполнение 6 мм)

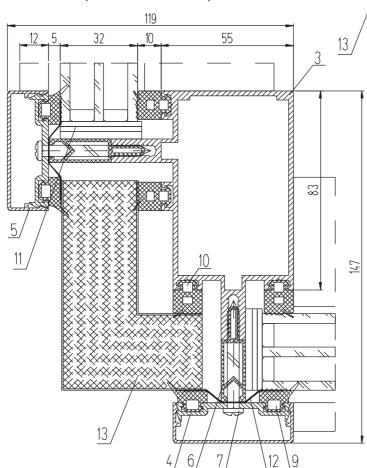

1-1 Вариант со стойкой КП45563 (заполнение 6 мм)

- 1. Стойка КП45370
- 2. Стойка КП45367
- 3. Стойка КП45563
- 4. Держатель КП45313-2
- 5. Крышка КП45310
- 6. Винт D7981 A2 PZ 5,5x19
- 7. Винт D7981 A2 PZ 3,5x16
- 8. Уплотнитель ТПУ-007ММ
- 9. Уплотнитель ТПУ-6002
- 10. Подкладка ТПУ-011
- 11. Герлен ЛТ 50х1,5
- 12. Cт. оцинк. лист s = 0,55мм

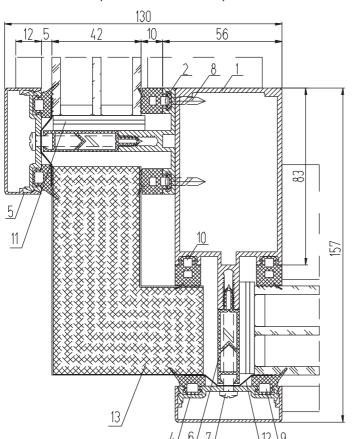


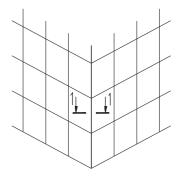

111


- 1. Стойка КП45370 2. Стойка КП45367
- 3. Стойка КП45563
- 4. Держатель КП45313-2 5. Крышка КП45310
- 6. Термовставка T50-01
- 7. Винт D7981 A2 PZ 5,5x38
- 8. Винт D7981 A2 PZ 3,5x16
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6002
- 11. Подкладки ТПУ-017-03, ТПУ-017-04
- 12. Герлен ЛТ 50х1,5
- 13. Сэндвич 24 мм



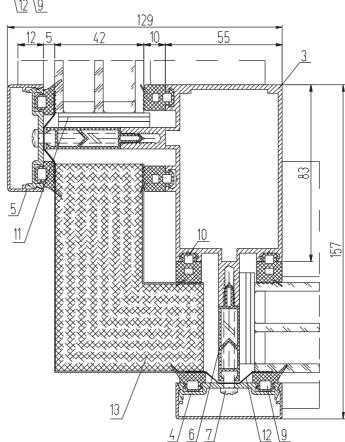
1-1 Вариант со стойками КП45370 **и КП45367** (заполнение 32 мм)

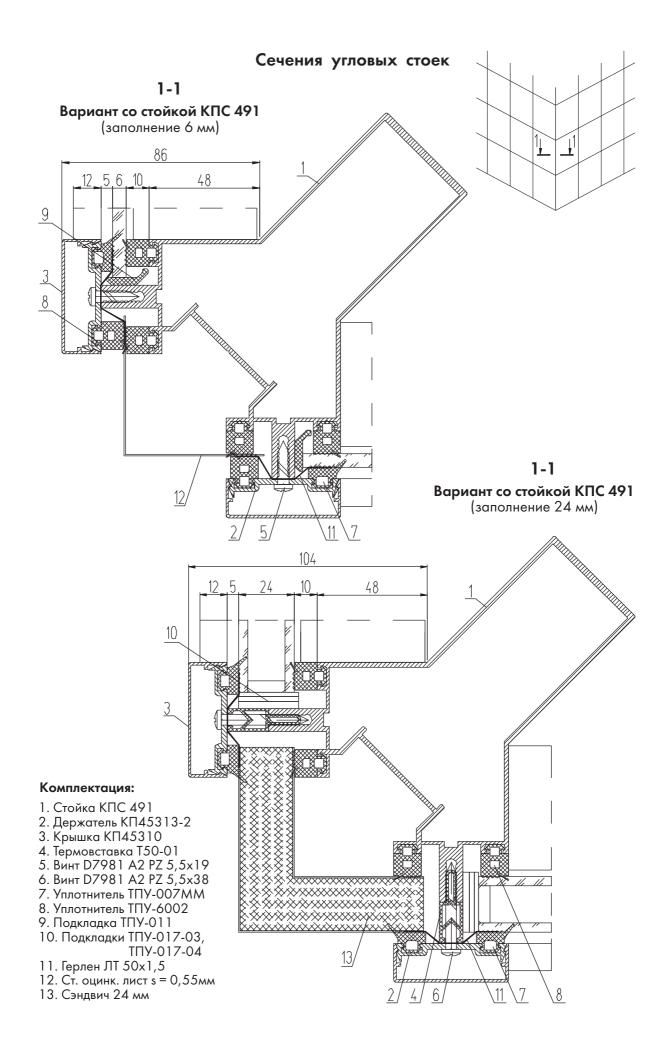

1-1 Вариант со стойкой КП45563 (заполнение 32 мм)

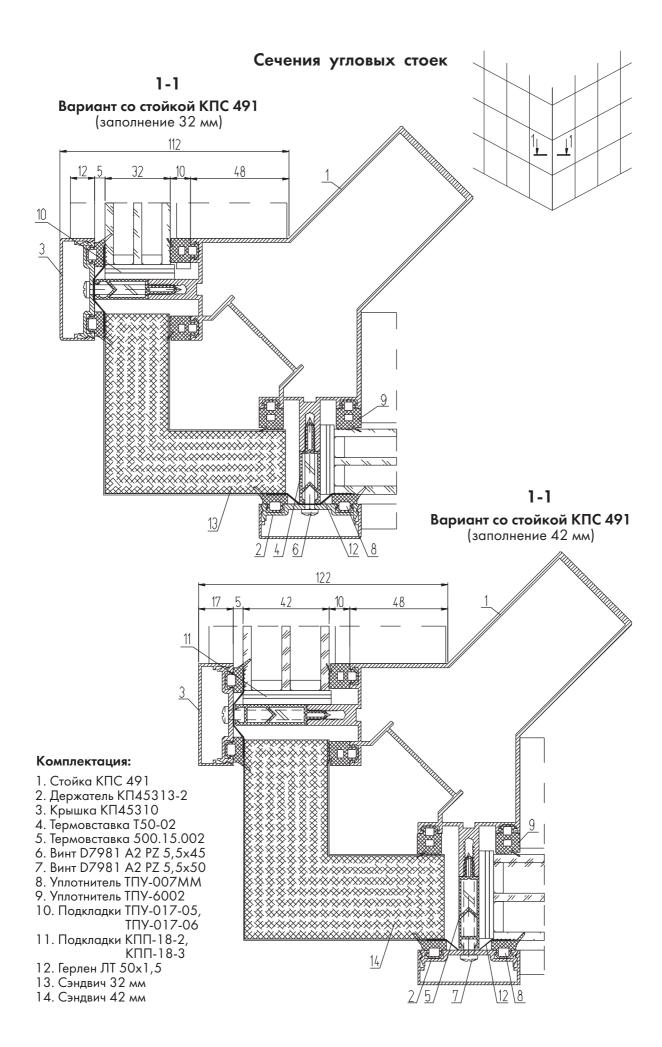


- 1. Стойка КП45370
- 2. Стойка КП45367
- 3. Стойка КП45563
- 4. Держатель КП45313-2
- Крышка КП45310
- 6. Термовставка Т50-02 7. Винт D7981 A2 PZ 5,5x45
- 8. Винт D7981 A2 PZ 3,5x16
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6002
- 11. Подкладки ТПУ-017-05 ТПУ-017-06
- 12. Герлен ЛТ 50х1,5
- Сэндвич 32 мм

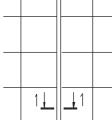
1 - 1 Вариант со стойками КП45370 **и КП45367** (заполнение 42 мм)

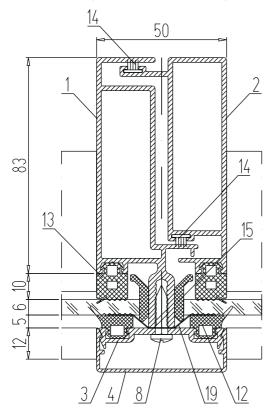


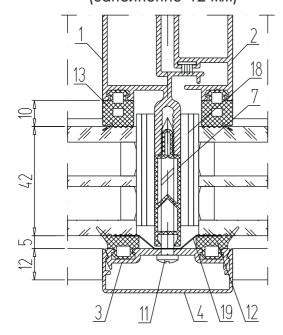

1-1 Вариант со стойкой КП45563 (заполнение 42 мм)

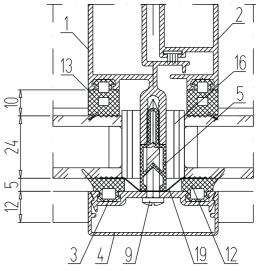

- 1. Стойка КП45370
- 2. Стойка КП45367
- 3. Стойка КП45563
- 4. Держатель КП45313-2
- Крышка КП45310
- 6. Термовставка 500.15.002 7. Винт D7981 A2 PZ 5,5x50 8. Винт D7981 A2 PZ 3,5x16

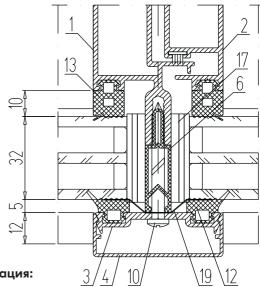
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6002
- 11. Подкладки КПП-18-2, КПП-18-3
- 12. Герлен ЛТ 50х1,5
- 13. Сэндвич 42 мм

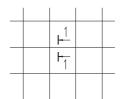




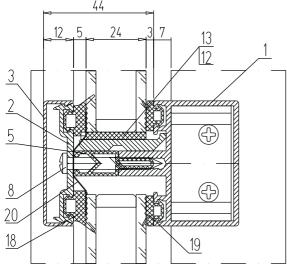

Сечения компенсационной стойки

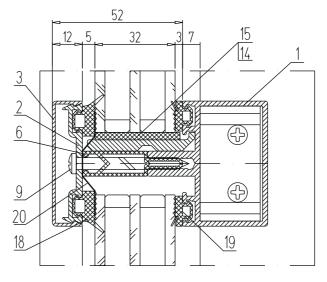

1-1 (заполнение 6 мм)


1-1 (заполнение 42 мм)

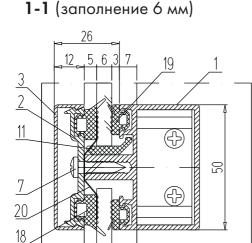

1-1 (заполнение 24 мм)

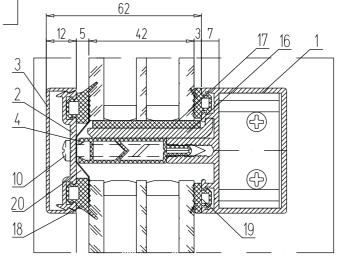
1-1 (заполнение 32 мм)

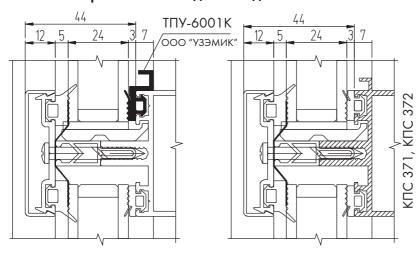

- 1. Стойка КП45380 2. Стойка КП45381
- 3. Держатель КП45313-2
- 4. Крышка КП45310
- 5. Термовставка Т50-01
- 6. Термовставка Т50-02
- 7. Термовставка 500.15.002
- 8. Винт D7981 A2 PZ 5,5х19 9. Винт D7981 A2 PZ 5,5х38
- 10. Винт D7981 A2 PZ 5,5x45
- 11. Винт D7981 A2 PZ 5,5x50
- 12. Уплотнитель ТПУ-007ММ
- 13. Уплотнитель ТПУ-6002
- 14. Щетка РВ69 800-3Р
- 15. Подкладка ТПУ-011
- 16. Подкладки ТПУ-017-03, ТПУ-017-04
- 17. Подкладки ТПУ-017-05, ТПУ-017-06
- 18. Подкладки КПП-18-2, КПП-18-3
- 19. Герлен ЛТ 50х1,5



Сечения основных промежуточных ригелей

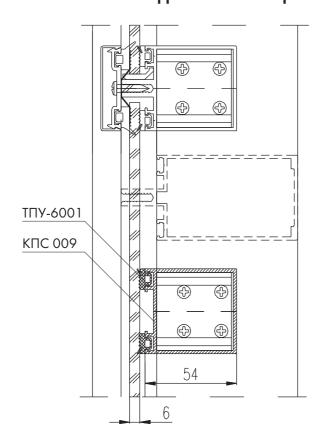

1-1 (заполнение 32 мм)

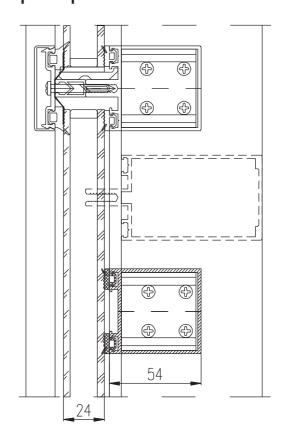

1-1 (заполнение 24 мм)

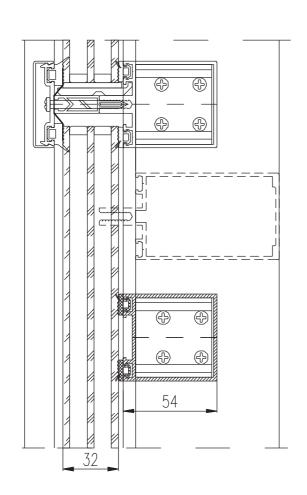


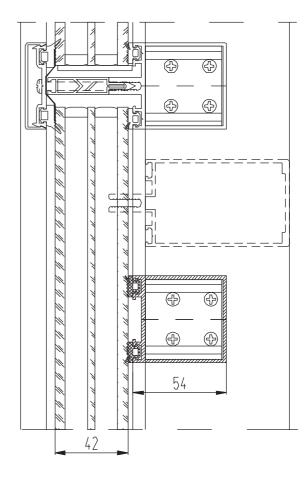
1-1 (заполнение 42 мм)

Варианты с отводом конденсата




- 1. Ригель
- 2. Держатель КП45313-2
- 3. Крышка КП45309
- 4. Термовставка 500.15.002
- 5. Термовставка Т50-01
- 6. Термовставка Т50-02
- 7. Винт D7981 A2 PZ 5,5x19
- 8. Винт D7981 A2 PZ 5,5x38
- 9. Винт D7981 A2 PZ 5,5x45
- 10. Винт D7981 A2 PZ 5,5x50
- 11. Подкладка ТПУ-011
- 12. Подкладка КП45109
- 13. Подкладка ТПУ-017-04
- 14. Подкладка КП45391
- 15. Подкладка ТПУ-017-06
- 16. Подкладка КПС 030 17. Подкладка КПП-18-3
- 18. Уплотнитель ТПУ-007ММ
- 19. Уплотнитель ТПУ-6001
- 20. Герлен ЛТ 50х1,5

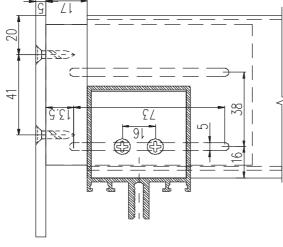



®

Сечения фрагментов витражей с фальшригелем КПС 009



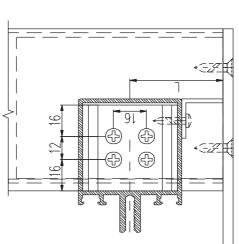
ДЕТАЛИРОВКИ И УЗЛЫ СБОРКИ

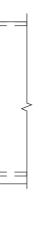

3 способа крепления ригелей в верхнем и нижнем узлах стойки

Крепление закладной 4-мя винтами

4

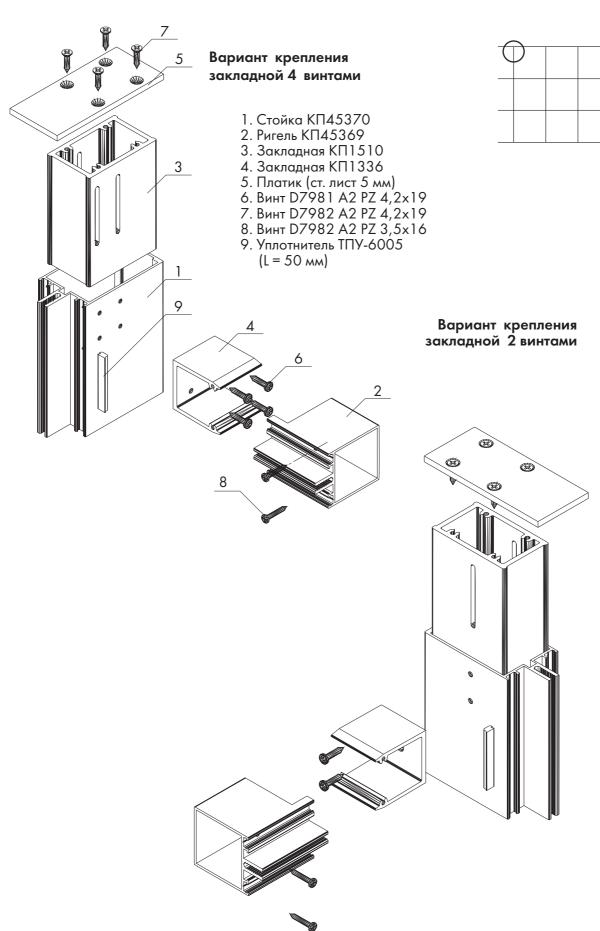
3.51


Крепление закладной 2-мя винтами

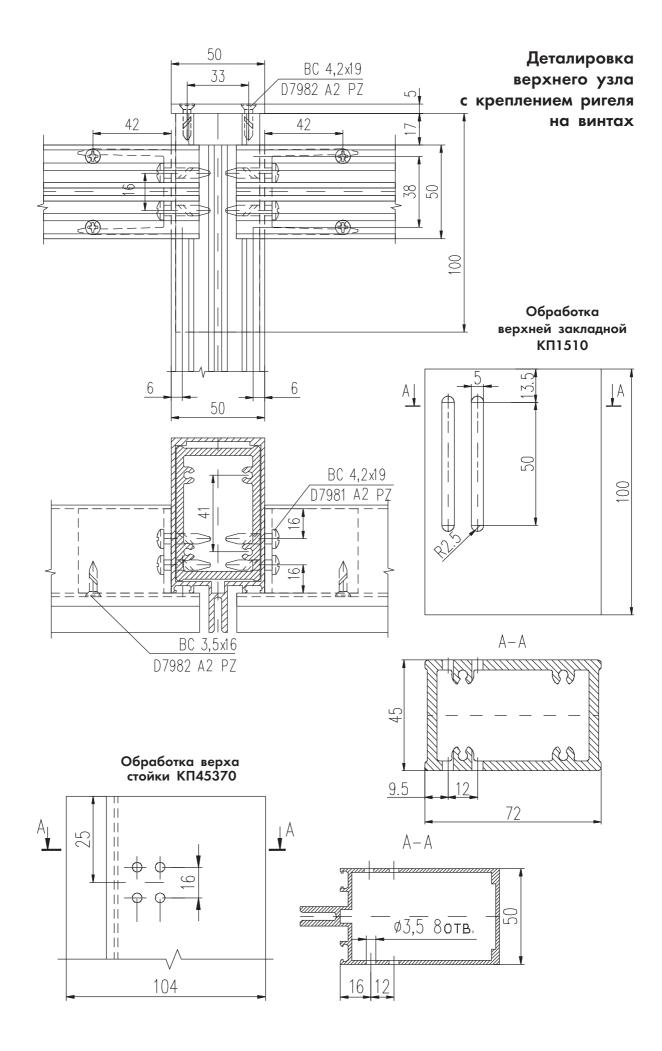


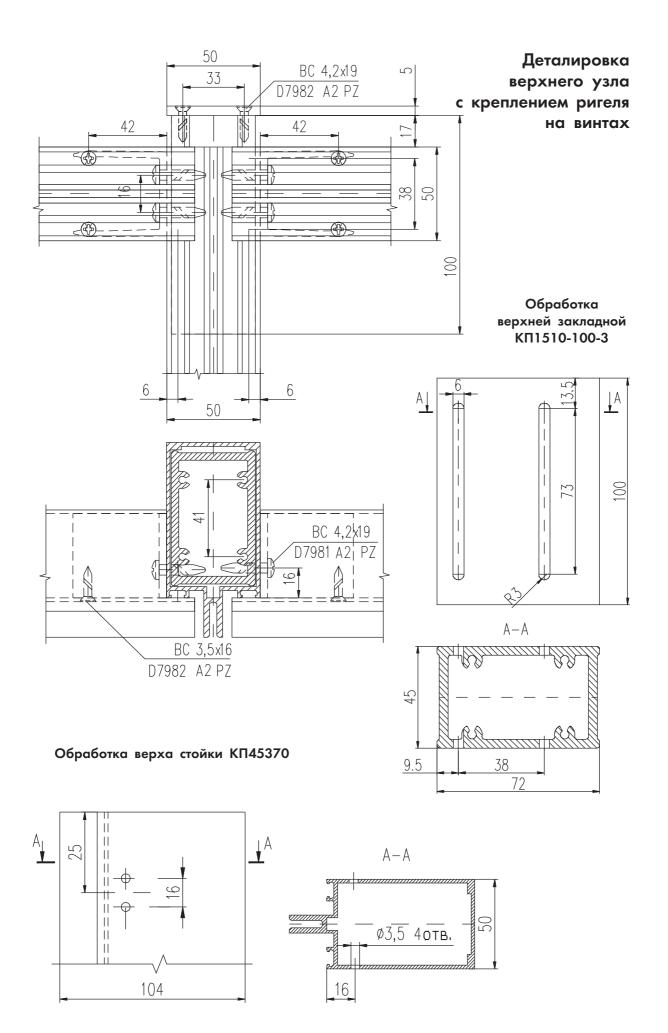
٤٧

91

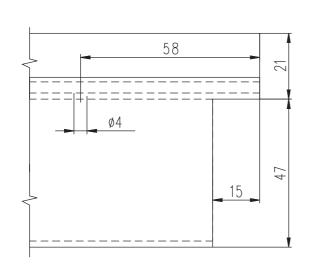


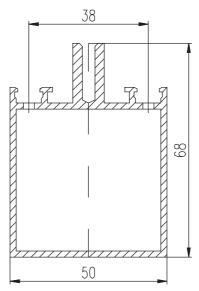
* *- I*

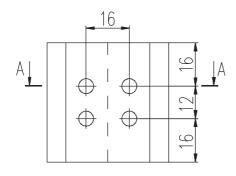

Крепление закладной болтом

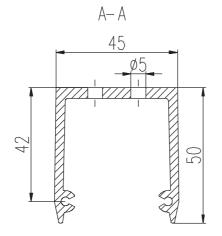


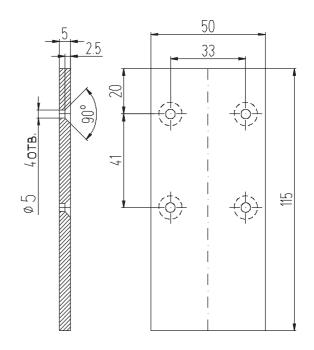
Узел верха стойки КП45370 с креплением ригелей КП45369



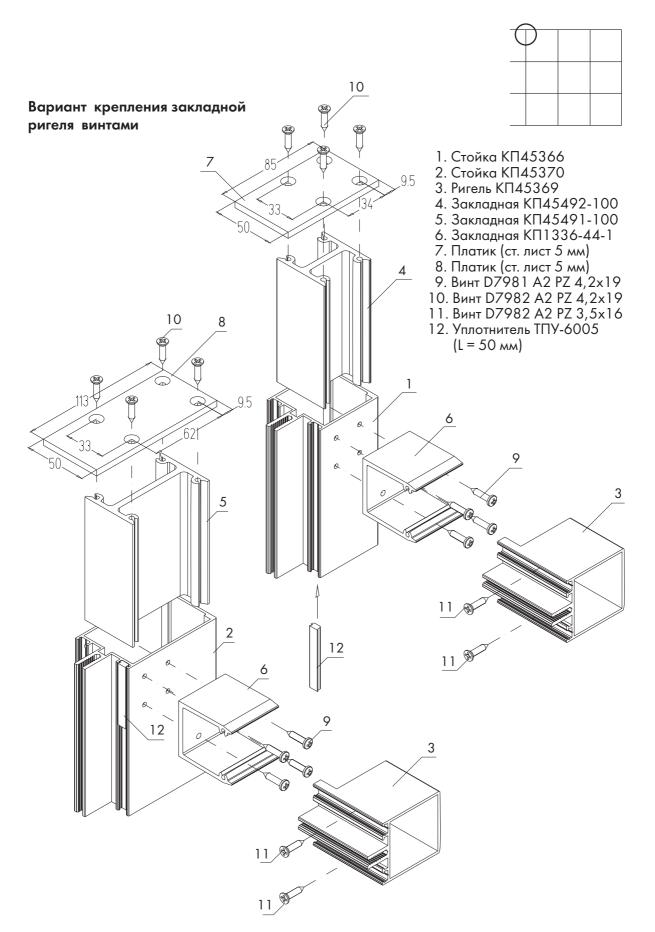



Деталировка


Обработка верхнего ригеля КП45369

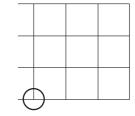


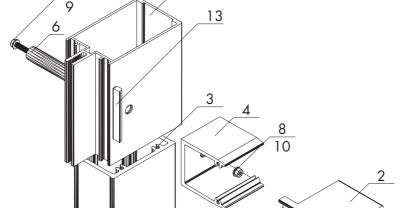
Обработка закладной КП1336-44-1



Стальной платик

Верхний узел крепления стоек КП45366 и КП45370 с помощью закладных КП45492 и КП45491 соответственно

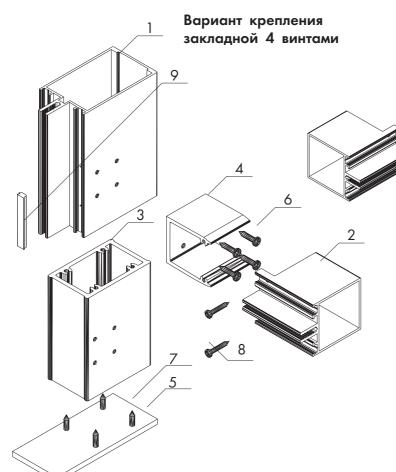




Узел низа стойки КП45370 с креплением ригелей КП45369

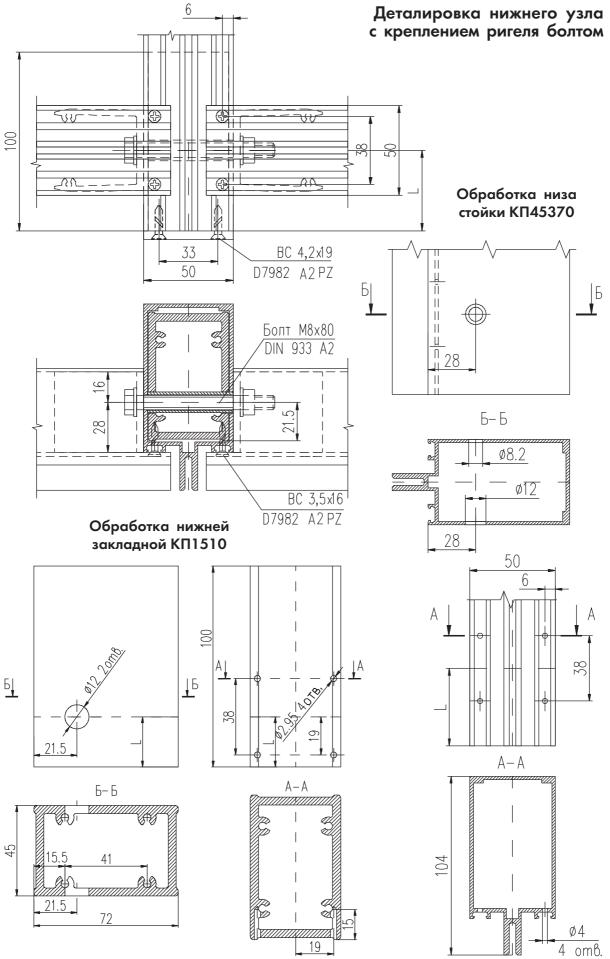
1

Вариант крепления закладной болтом



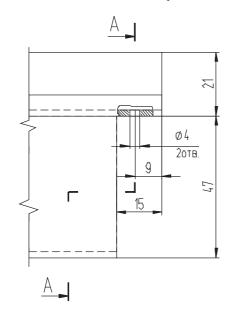
11

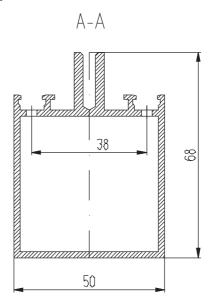
.12

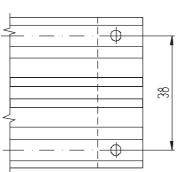

- 1. Стойка КП45370
- 2. Ригель КП45369
- 3. Закладная КП1510
- 4. Закладная КП1336-44-5
- Платик (ст. лист 5 мм)
- 6. Труба 11,65 \times 1,5 L = 47,5 \times 1
- 7. Болт M8x80 DIN 933 A2
- 8. Гайка M8 DIN 934
- 9. Шайба 8 DIN 125
- 10. Шайба 8 DIN 127
- 11. Винт D7982 A2 PZ 4,2x19
- 12. Винт D7982 A2 PZ 3,5x16
- 13. Уплотнитель ТПУ-6005

Вариант крепления закладной 2 винтами

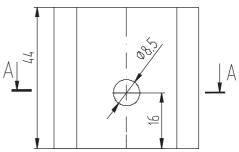
- 1. Стойка КП45370 2. Ригель КП45369
- 3. Закладная КП1510
- 4. Закладная КП1336-44-1
- Платик (ст. лист 5 мм)
- 6. Винт D7981 A2 PZ 4,2x19
- 7. Винт D7982 A2 PZ 4,2x19
- 8. Винт D7982 A2 PZ 3,5x16
- 9. Уплотнитель ТПУ-6005 (L = 50 мм)

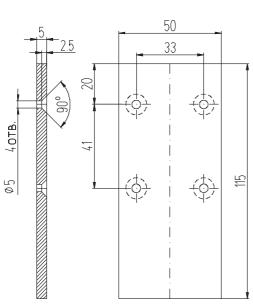


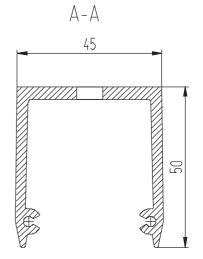


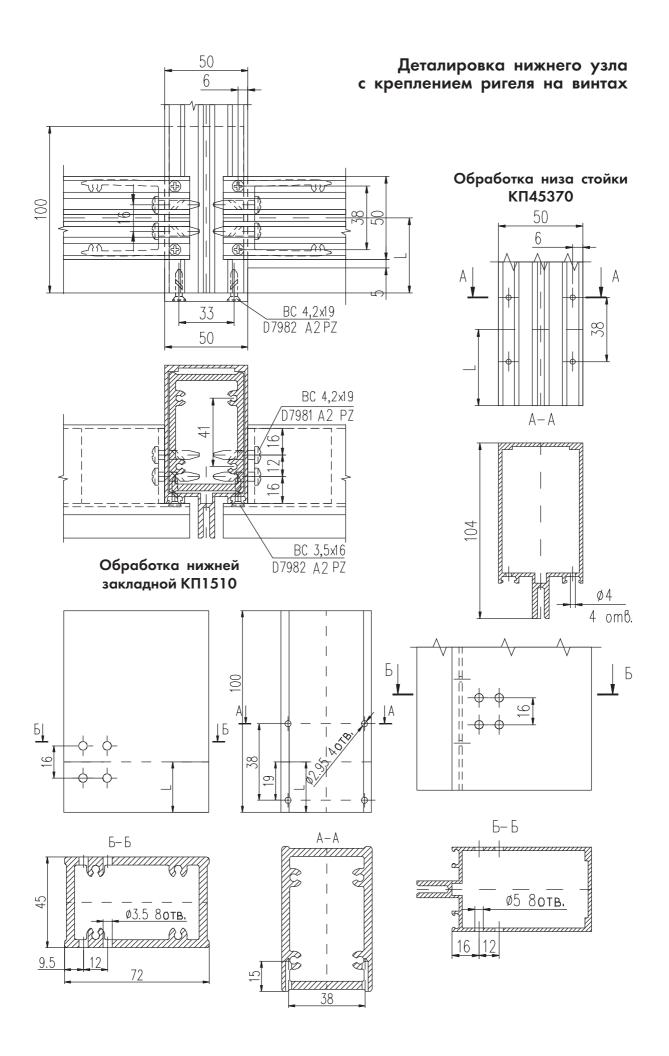


Деталировка

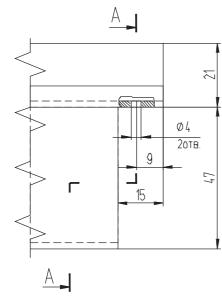

Обработка ригеля

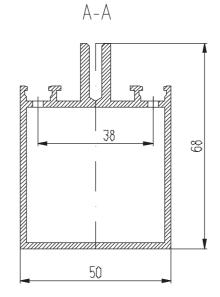


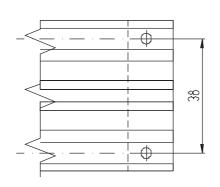




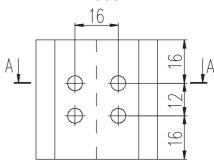
Стальной платик

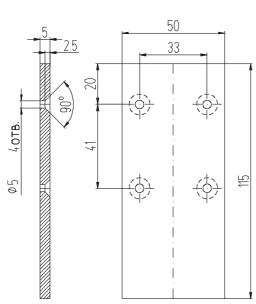


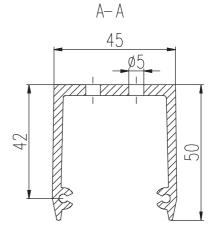


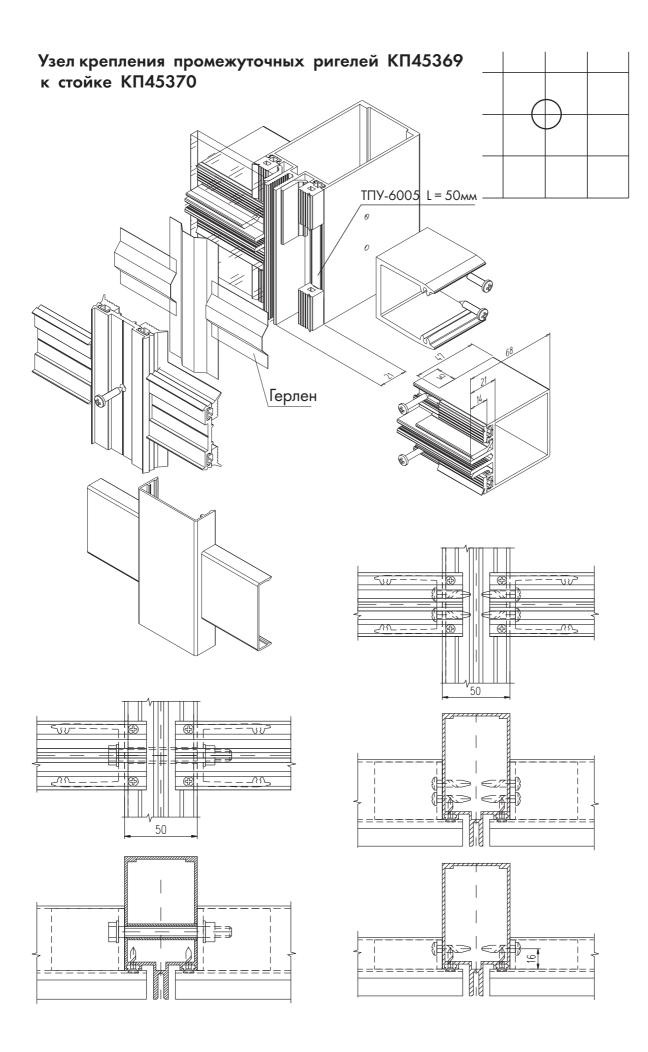


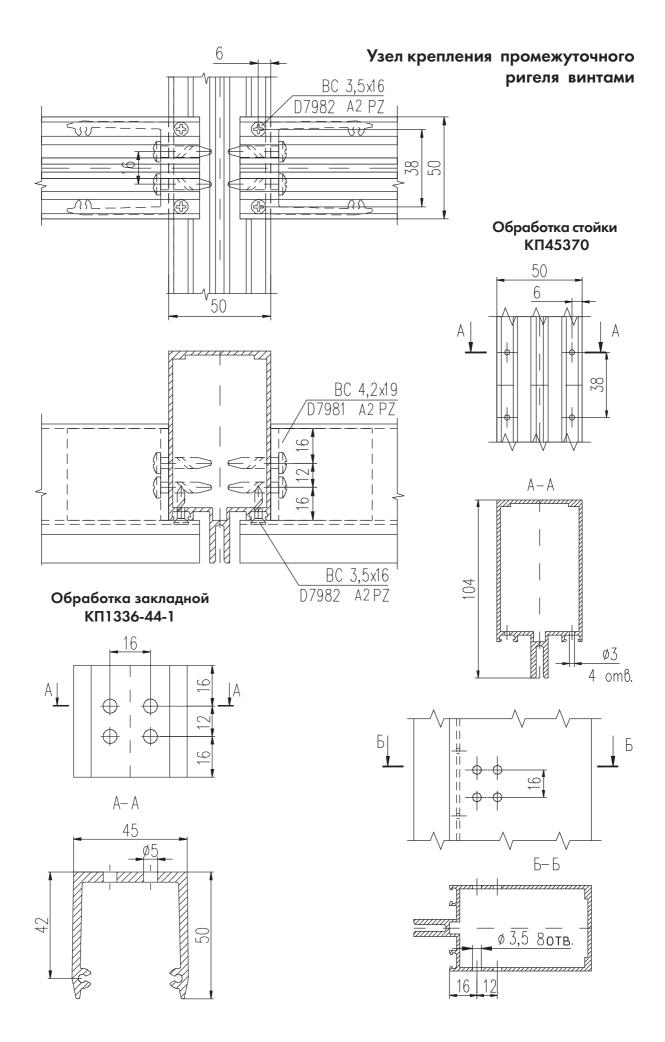
Деталировка

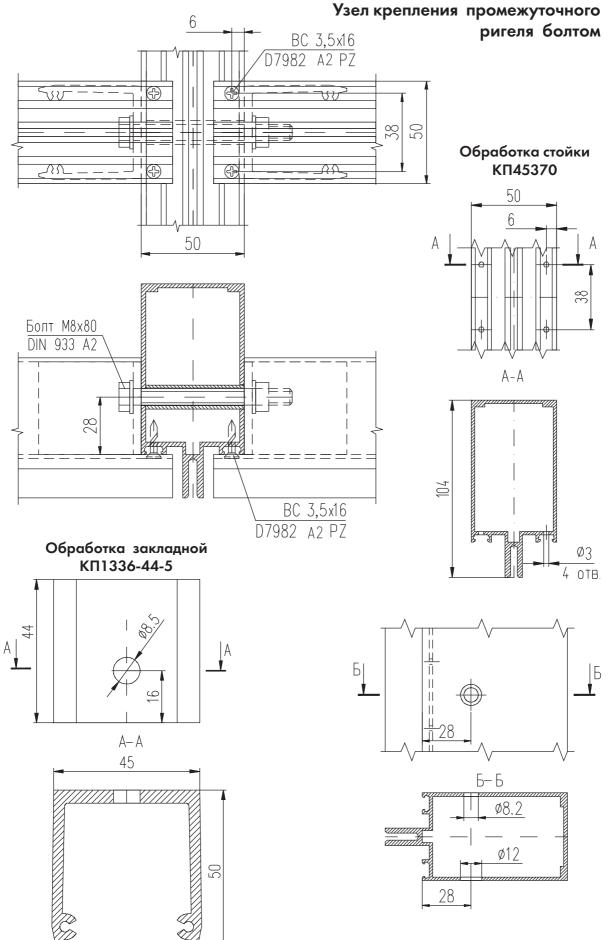

Обработка ригеля КП45369

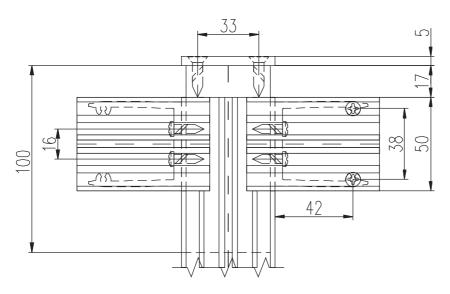


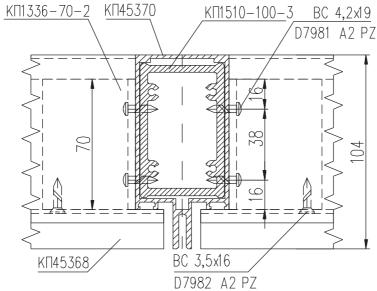



Обработка закладной КП1336-44-1

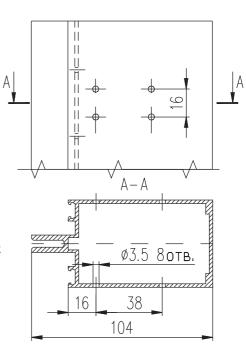

Стальной платик

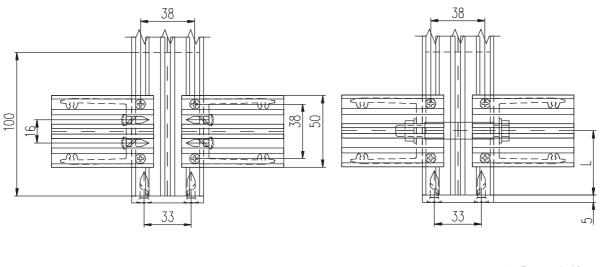


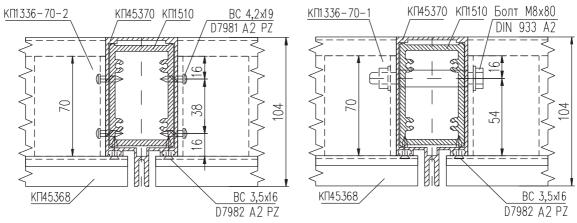


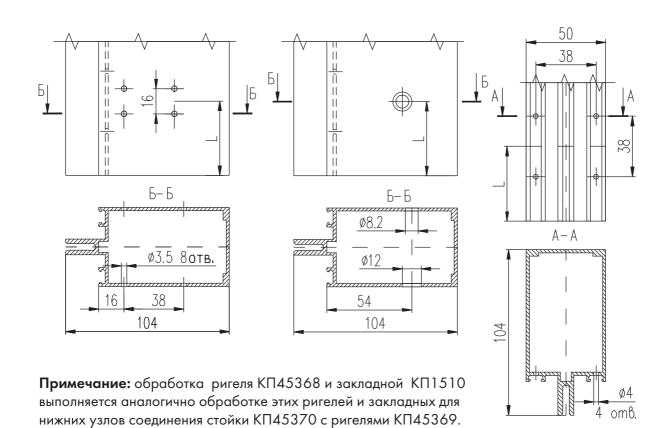


Узел верха стойки КП45370 с креплением ригелей КП45368

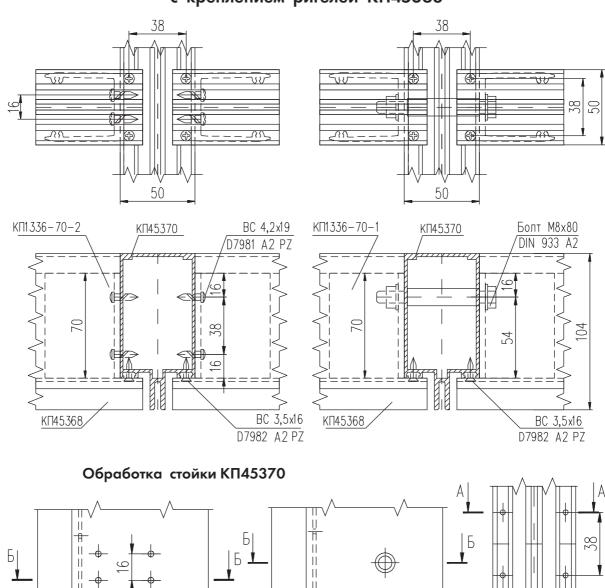


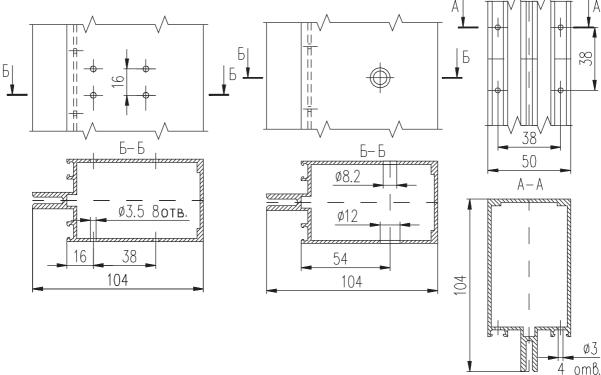

Обработка стойки КП45370


Примечание:

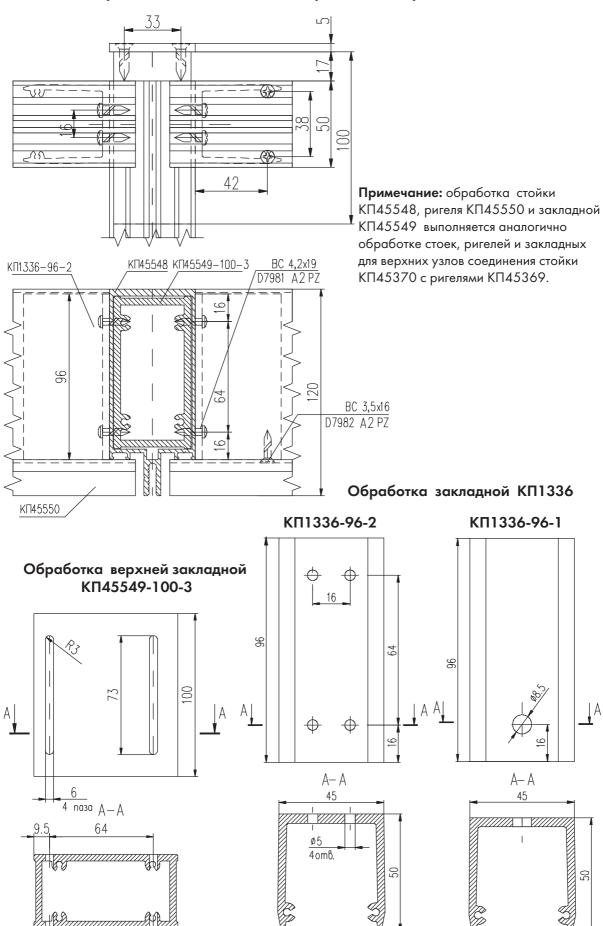

- обработка ригеля КП45368, закладной КП1510 выполняется аналогично обработке этих ригелей и закладных для верхних узлов соединения стойки КП45370 с ригелями КП45369;
- обработка закладной КП1336-70-2 приведена в узлах крепления ригеля КП45368 к стойке КПС 014.

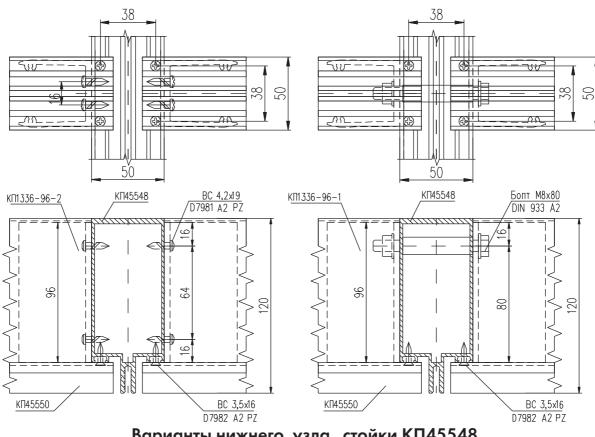
Варианты узла низа стойки КП45370 с креплением ригелей КП45368

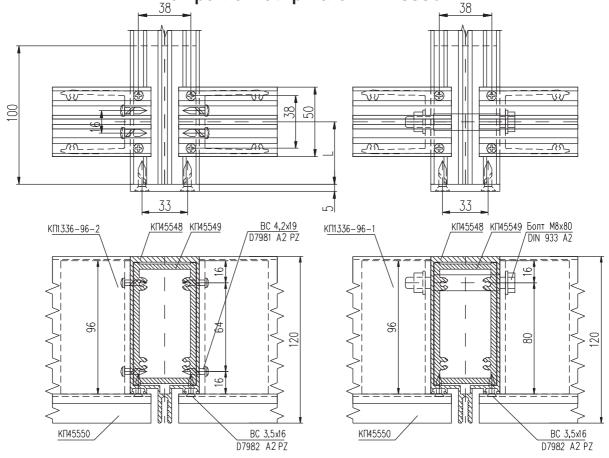


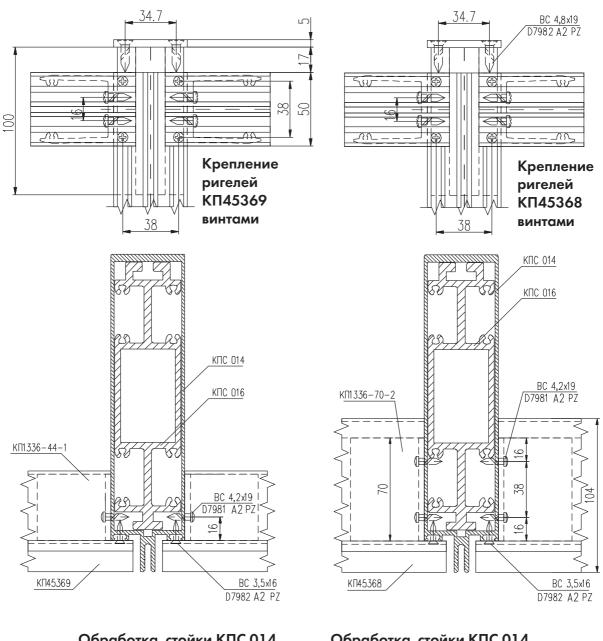


Варианты промежуточного узла стойки КП45370 с креплением ригелей КП45368

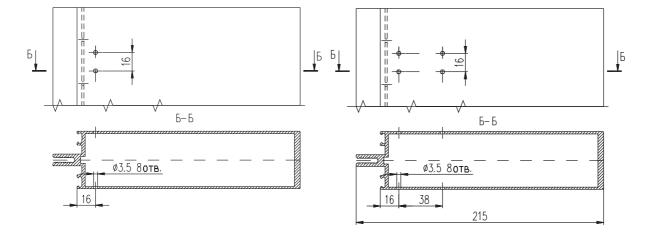



Примечание: обработка ригеля КП45368 выполняется аналогично обработке этих ригелей для промежуточных узлов соединения стойки КП45370 с ригелями КП45369

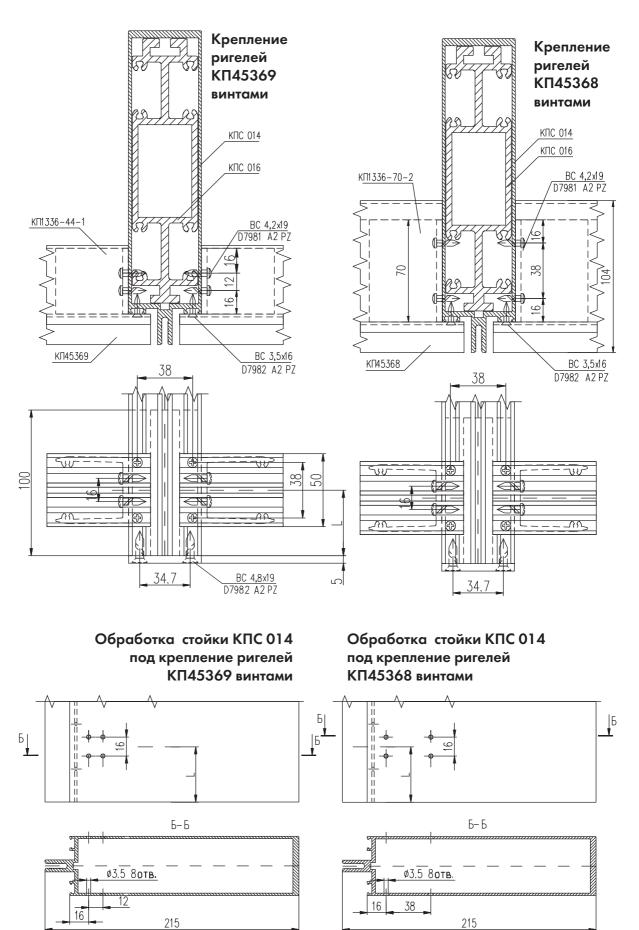

Узел верха стойки КП45548 с креплением ригелей КП45550


Варианты промежуточного узла стойки КП45548 с креплением ригелей КП45550

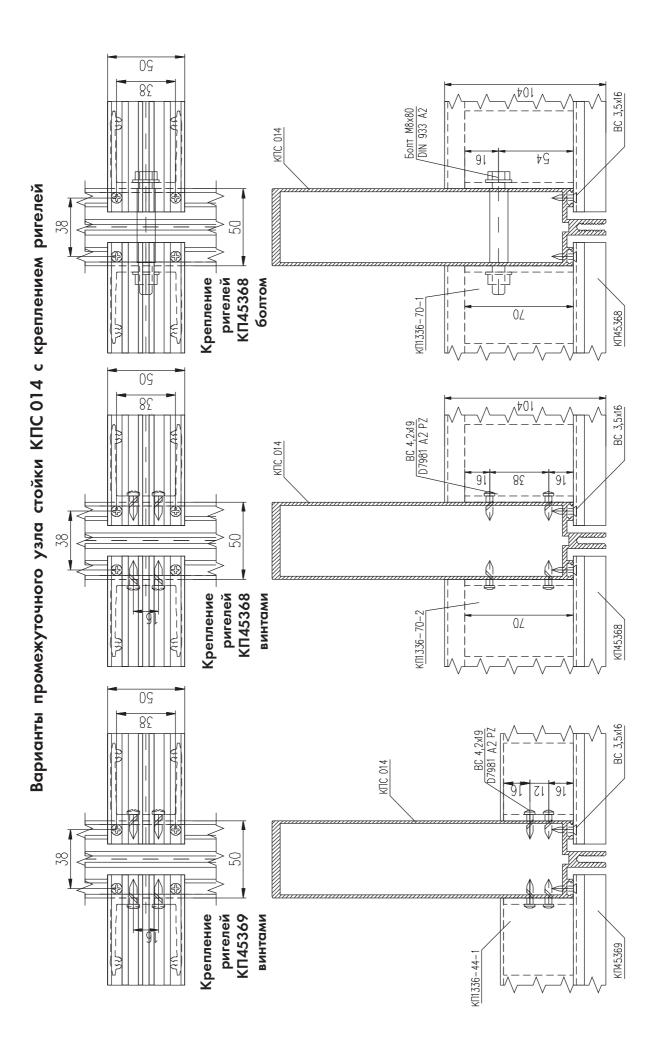
Варианты нижнего узла стойки КП45548 с креплением ригелей КП45550



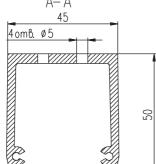
Варианты узла верха стойки КПС 014 с креплением ригелей

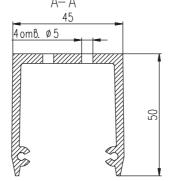

Обработка стойки КПС 014 под крепление ригелей КП45369 винтами

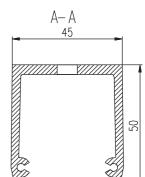
Обработка стойки КПС 014 под крепление ригелей КП45368 винтами



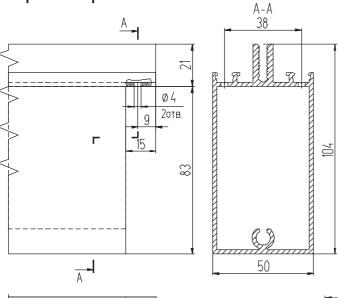
Варианты узла низа стойки КПС 014 с креплением ригелей

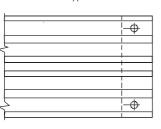


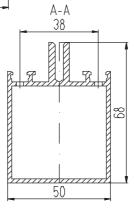


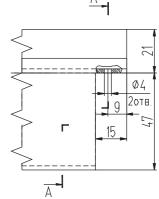


Обработка стойки КПС 014 Платик под крепление ригеля 2.5 Обработка закладной 50 КПС 016 под крепление 38 ригеля КП45369 39 2 225 A-A 35.5 20.5 $\mathbb{A} - \mathbb{A}$ 50 215 Примечание: обработка стойки КПС 014 одинакова для верхних, нижних и промежуточных узлов. Обработка закладной КП1336 КП1336-70-2 КП1336-70-1 Ø3 4 OTB. КП1336-44-1 16 2 2 38 **∀** ‡ <u></u> A 9 A-AA-AA-A

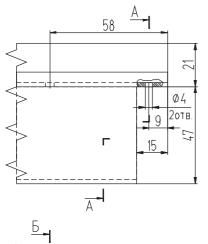


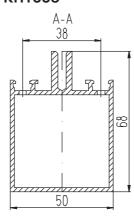

Деталировка

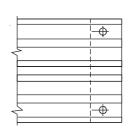


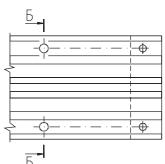


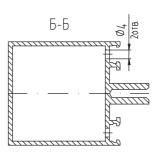
Примечание: обработка ригелей КП45369 и КП45368 одинакова для верхних, нижних и промежуточных узлов крепления к стойке КПС 014

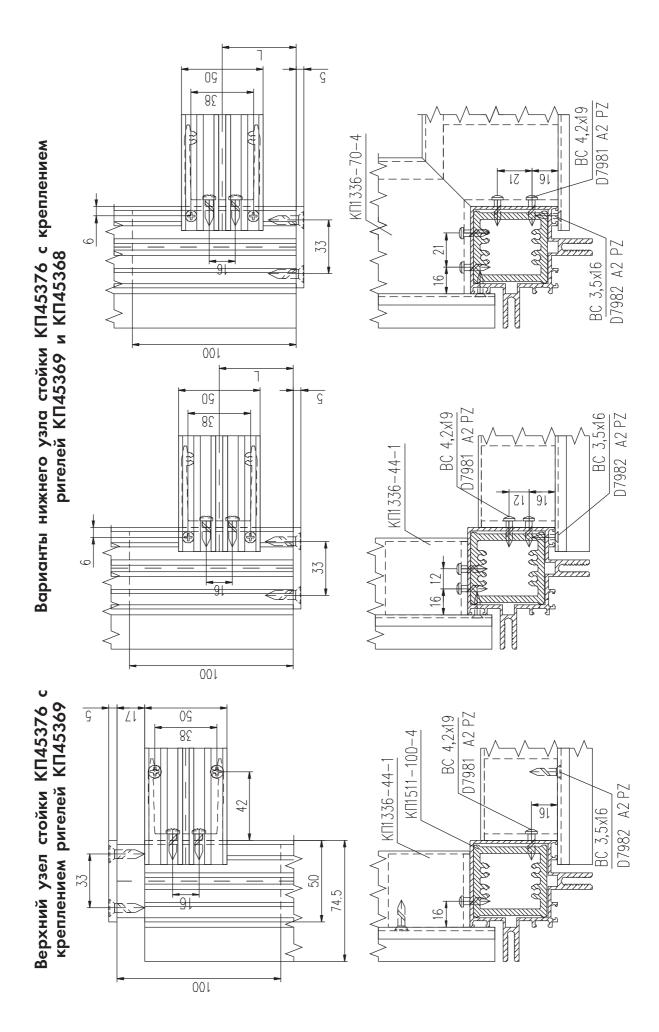

Обработка ригеля КП45369



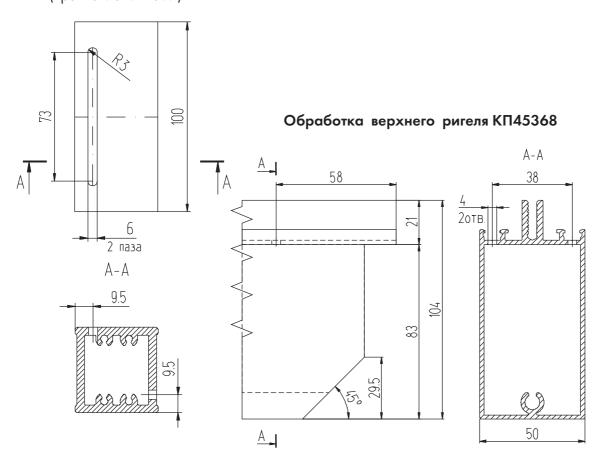




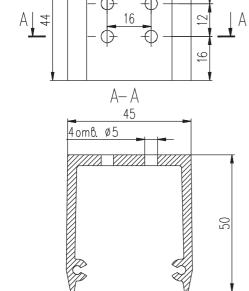

Обработка ригеля для крепления к стойке и к закладной КП1336



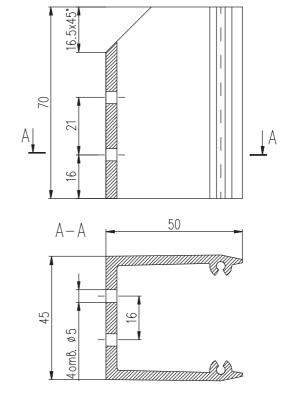
Примечание: в самонесущих конструкциях рекомендуется крепить ригель и к стойке и к закладной КП1336



Деталировка

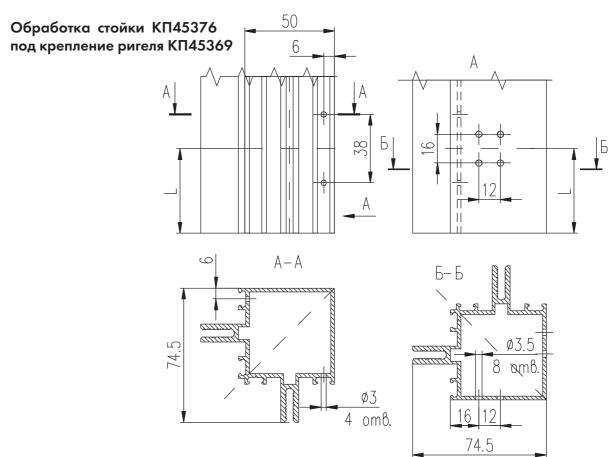

Обработка верхней закладной КП1511-100-4

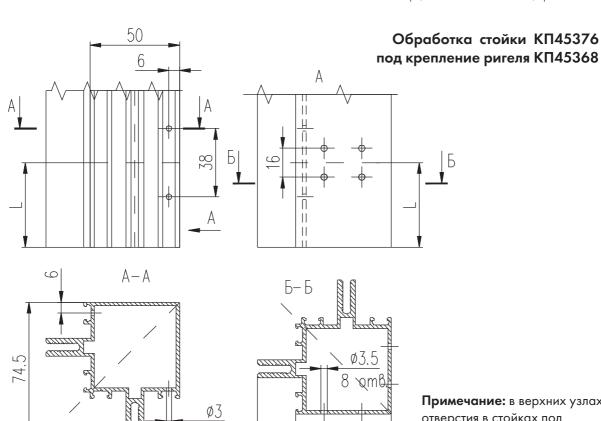
(крепление винтами)



КП1336-44-1

16




КП1336-70-4

Деталировка

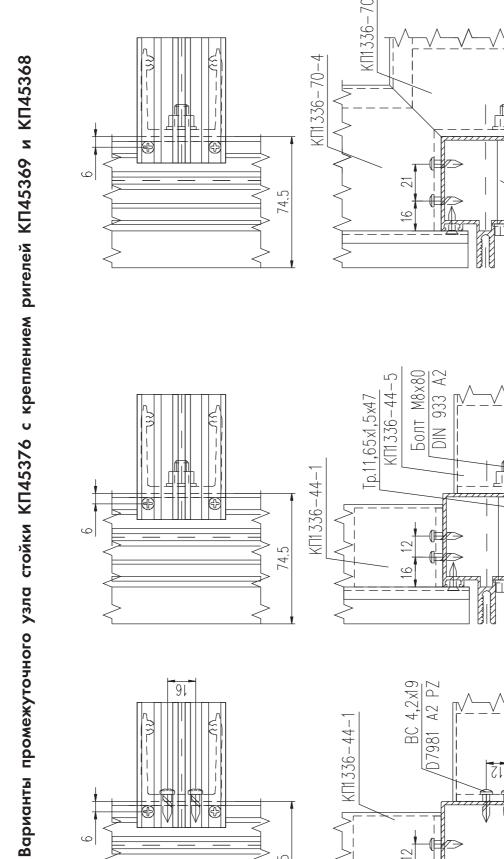
16

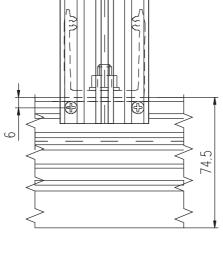
74.5

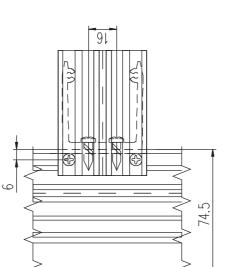
4 omβ.

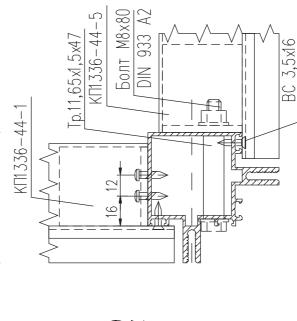
Примечание: в верхних узлах отверстия в стойках под крепление ригелей не выполняются.

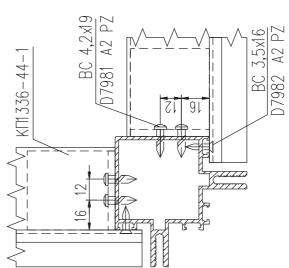
DIN 933 A2 **Болт М8x80**

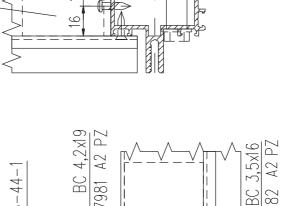

D7982 A2 PZ

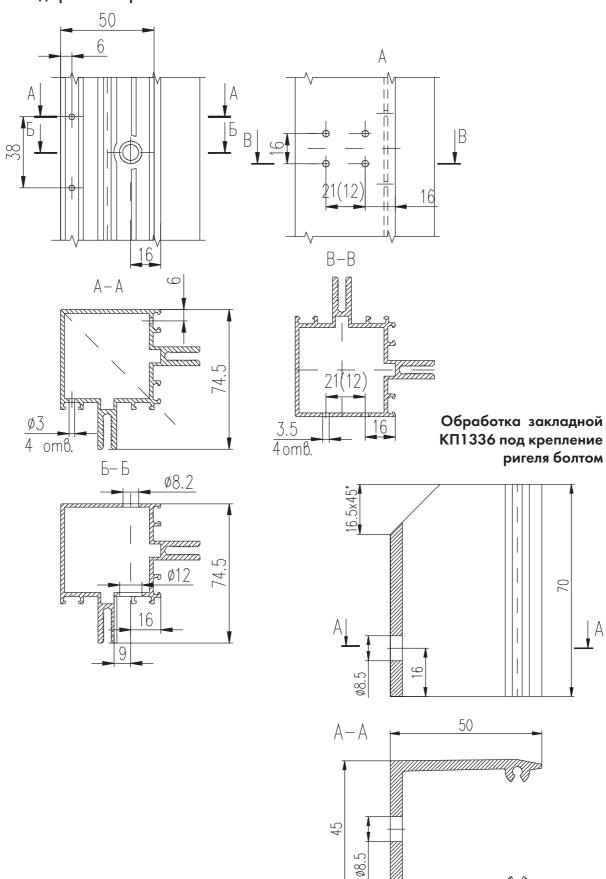

D7982 A2 PZ


BC 3,5x16

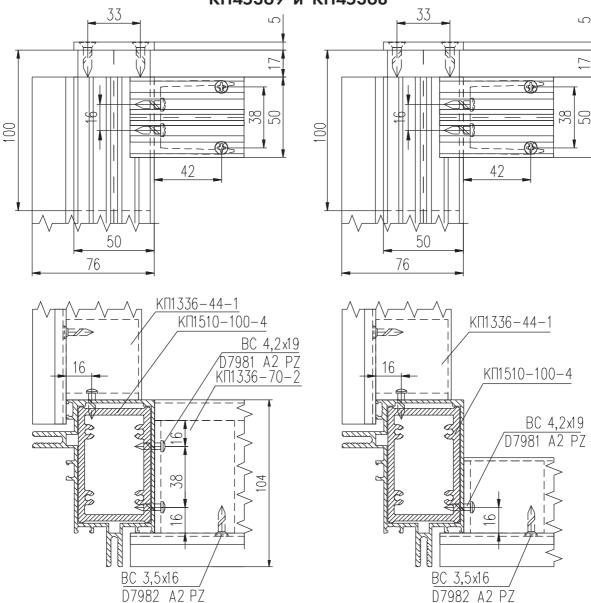

Tp.11,65x1,5x47,


91



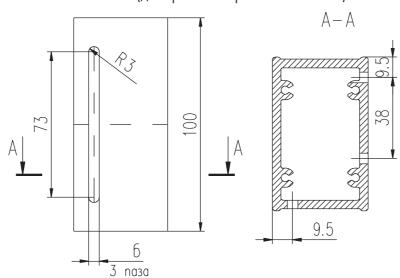


®

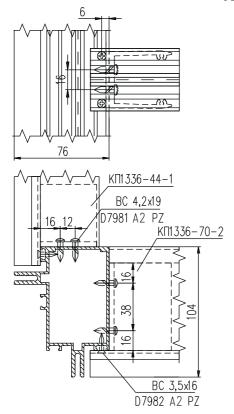


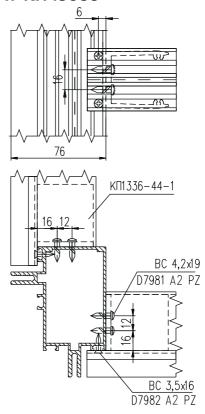
Деталировка

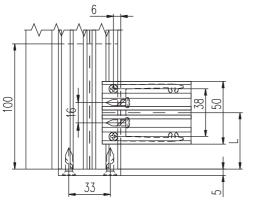
Обработка стойки КП45376 под крепление ригеля болтом

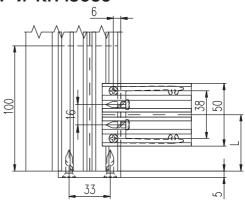


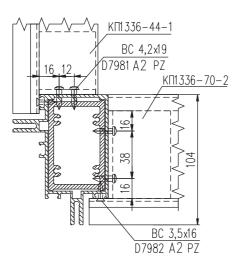
Варианты верхнего узла стойки КП45563 с креплением ригелей КП45369 и КП45368

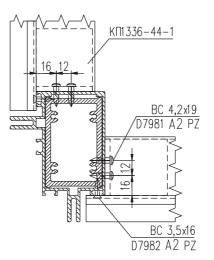

Обработка закладной КП1510-100-4


(для крепления ригелей винтами)

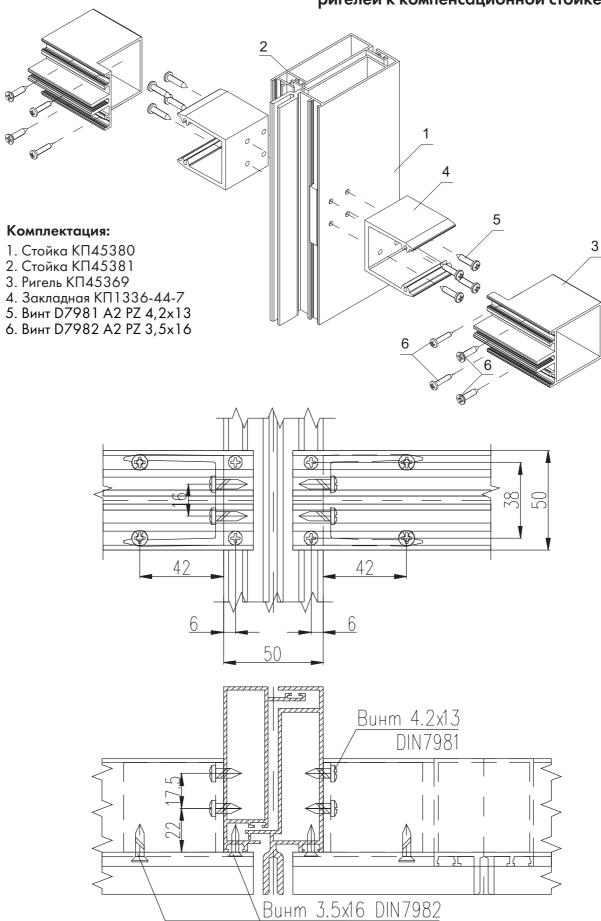


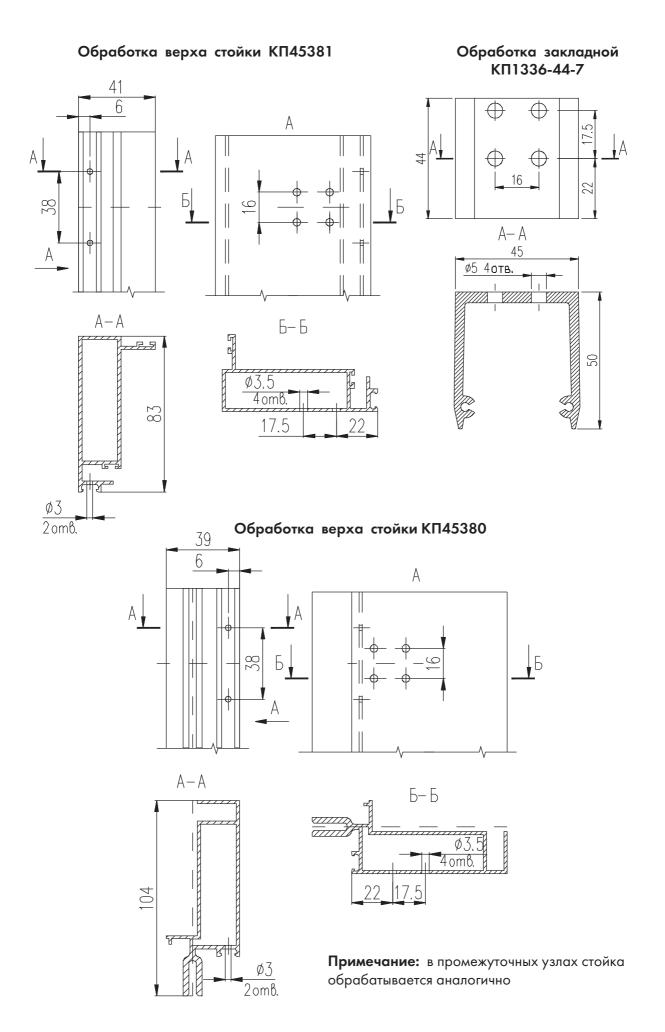

Варианты промежуточного узла стойки КП45563 с креплением ригелей КП45369 и КП45368

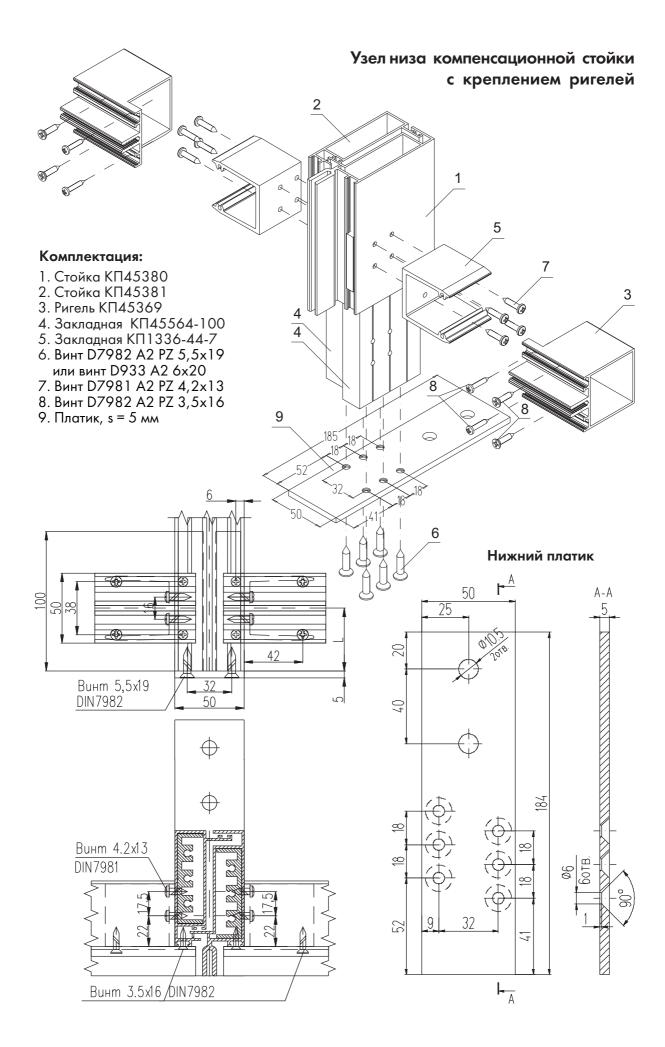


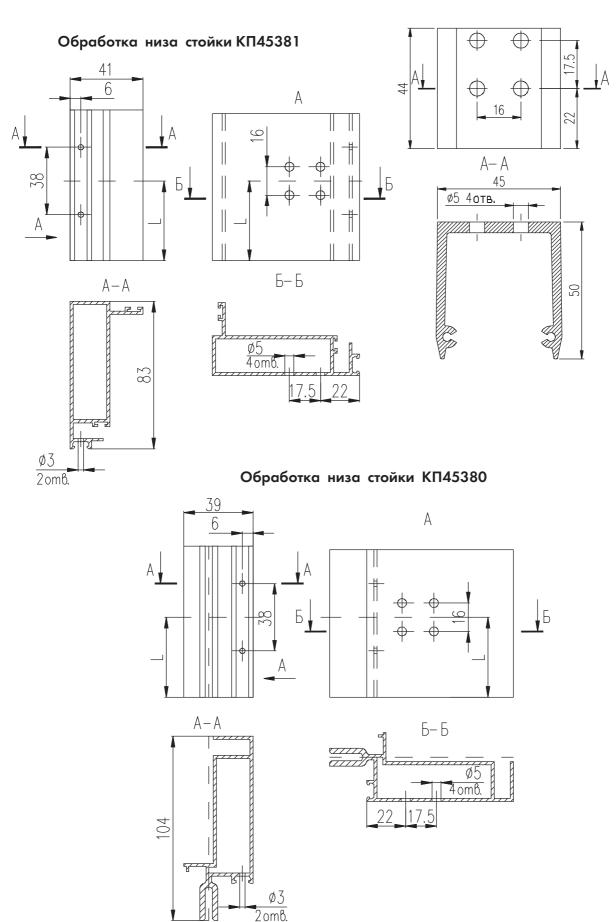


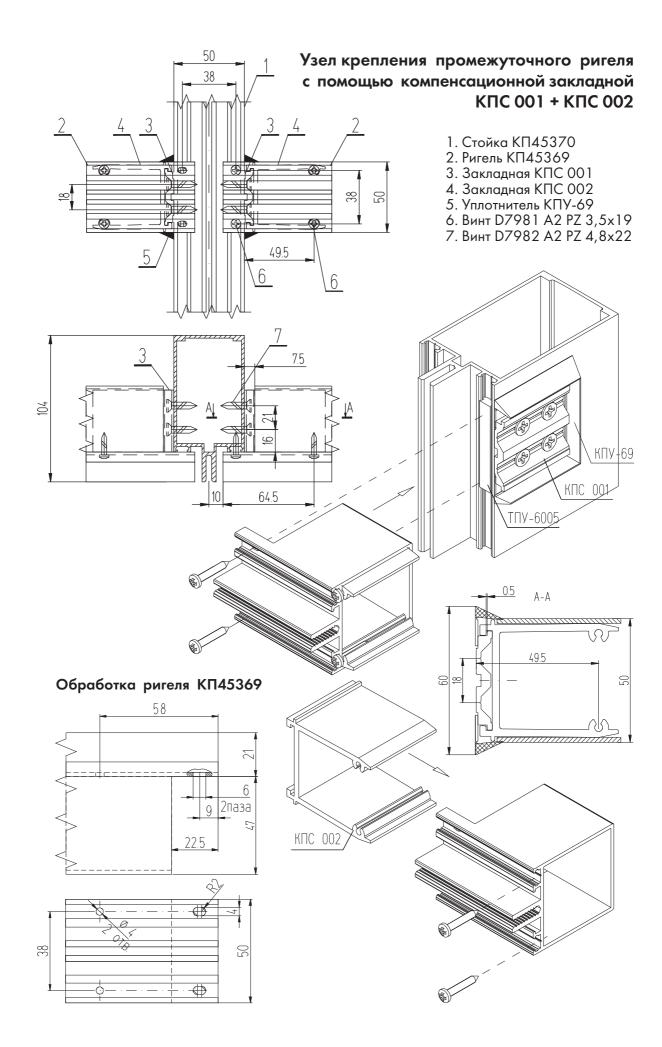
Варианты нижнего узла стойки КП45563 с креплением ригелей КП45369 и КП45368

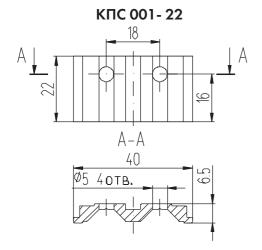


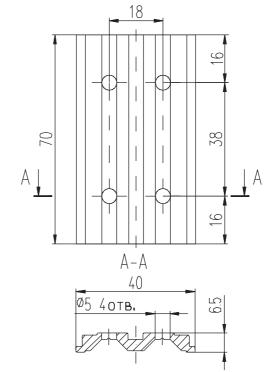


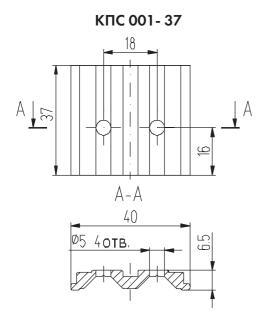

Узел крепления промежуточных ригелей к компенсационной стойке

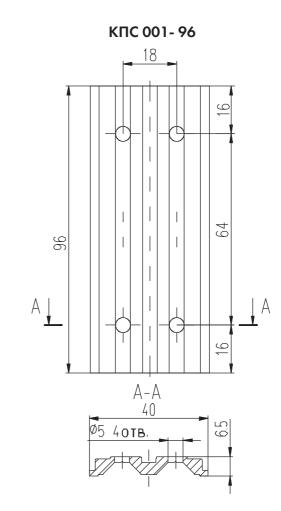


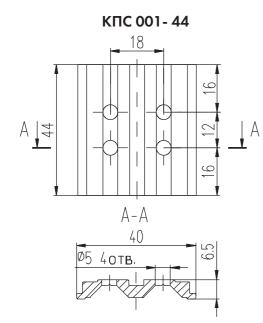



Обработка закладной КП1336-44-7

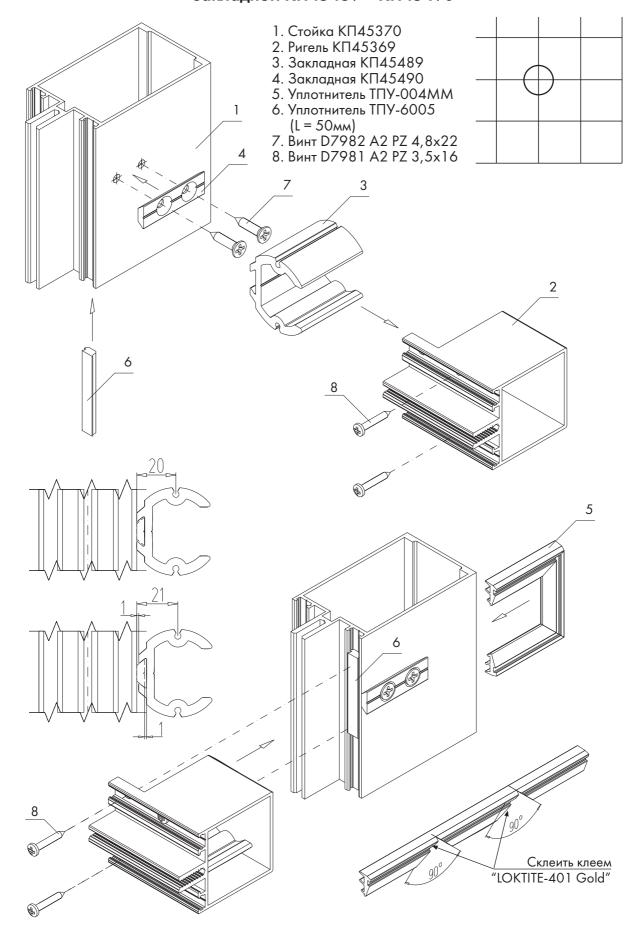


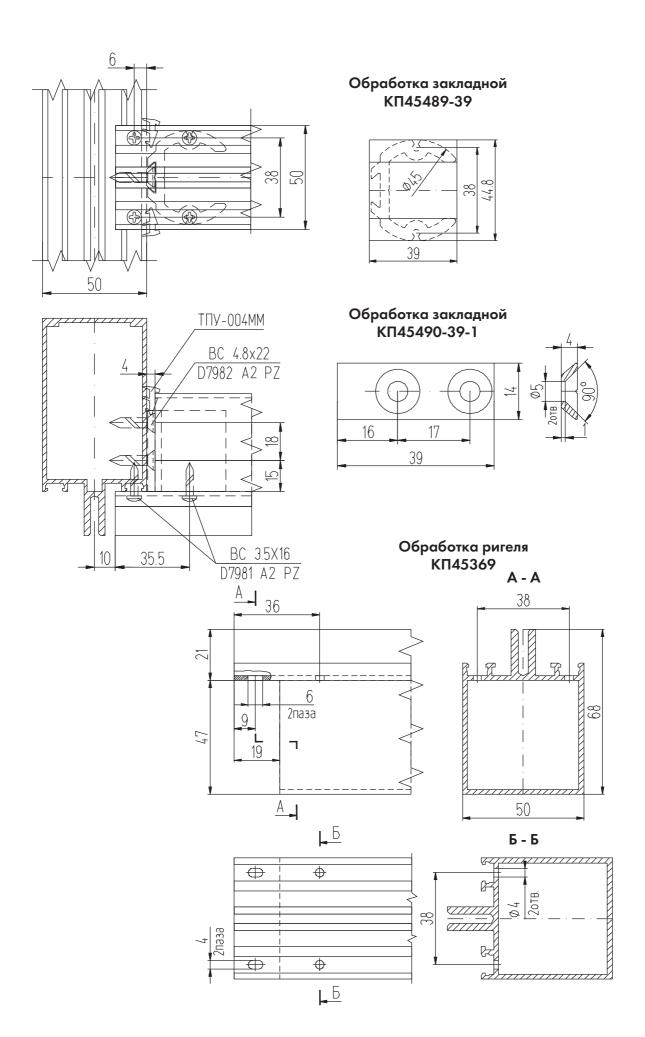



Обработка закладной КПС 001

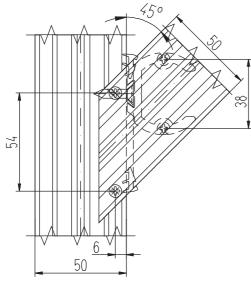


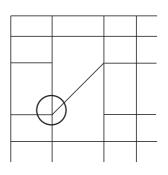
КПС 001-70

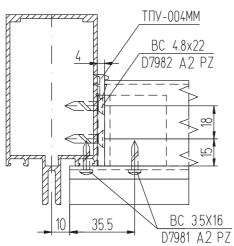




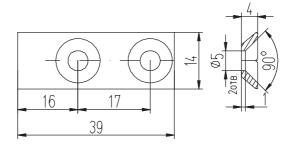
Узел крепления промежуточного ригеля с помощью компенсационной закладной КП45489 + КП45490

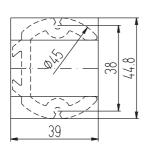


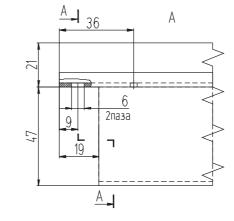


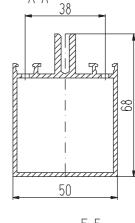


®

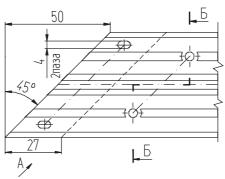

Узел крепления ригеля под углом в вертикальной плоскости

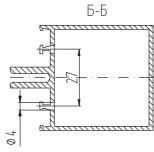


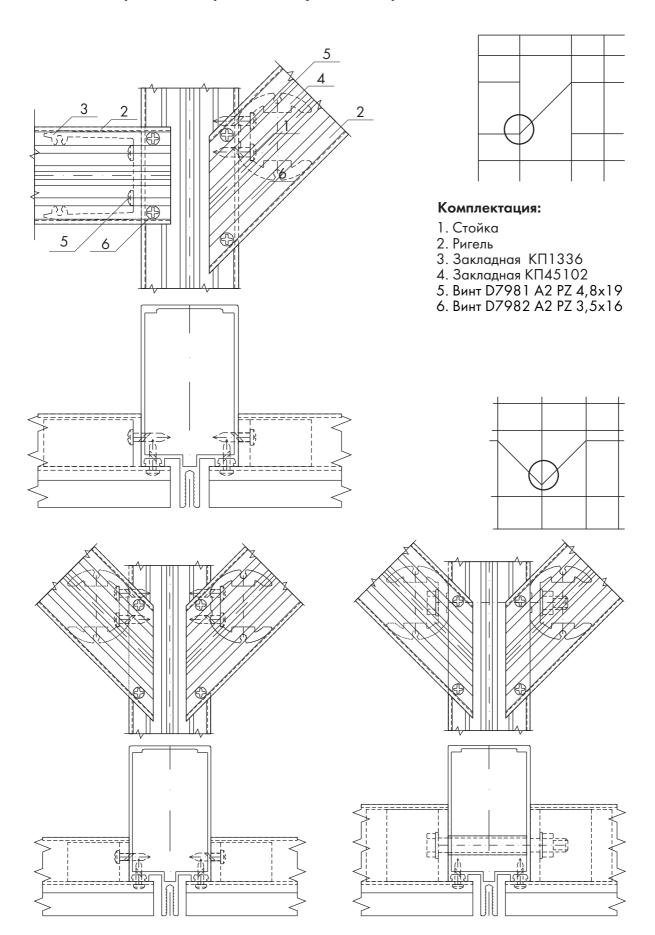

Обработка закладной КП45490-39-1



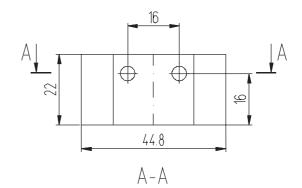
Обработка ригеля КП45369

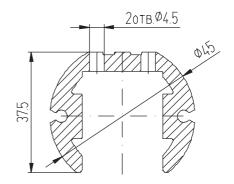

Обработка закладной КП45489-39

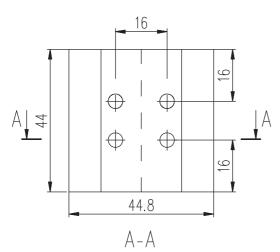


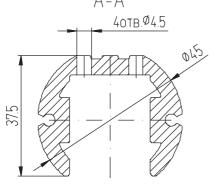


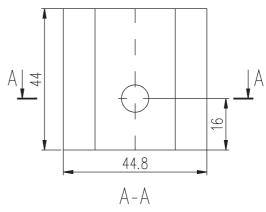
A-A

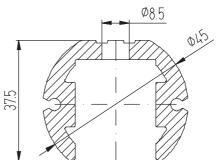


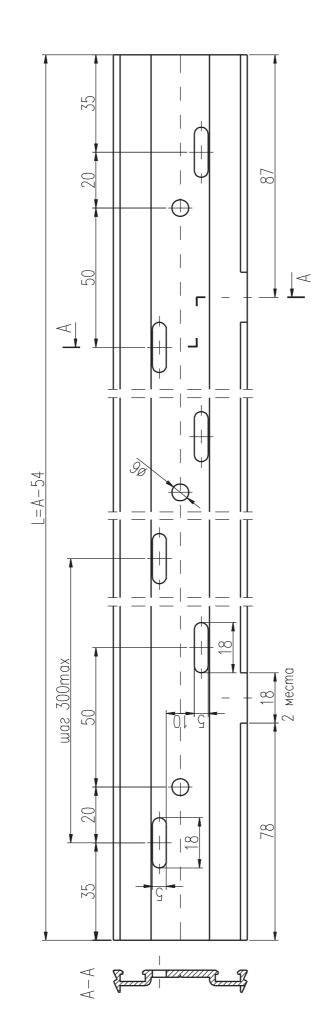

Узел крепления ригеля под углом в вертикальной плоскости

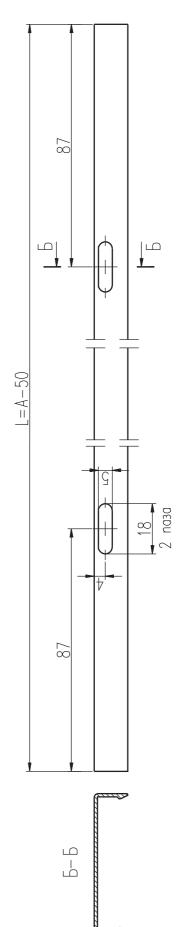


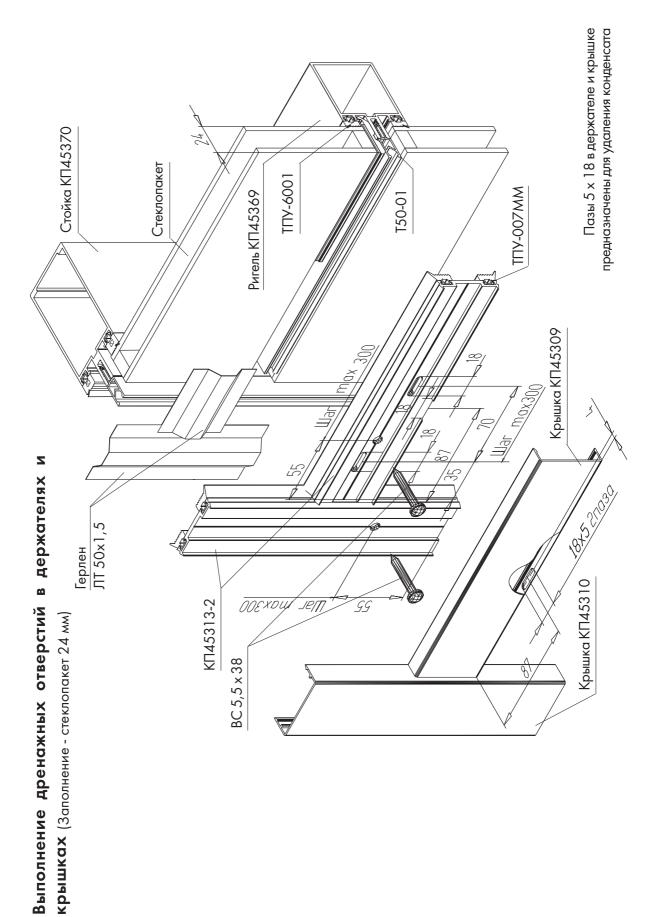




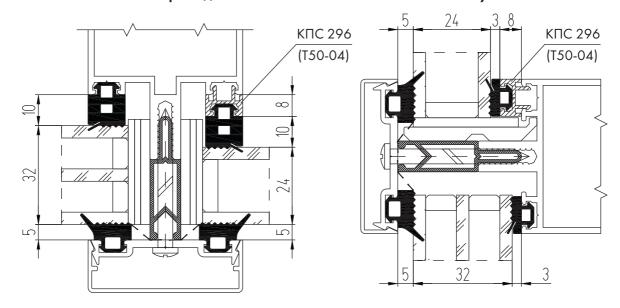

Обработка закладной КП45102-44-2

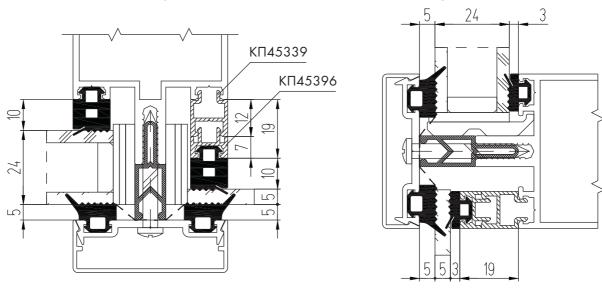


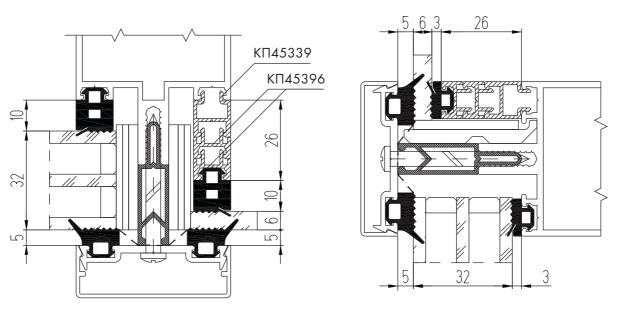

Обработка закладной КП45102-44-3

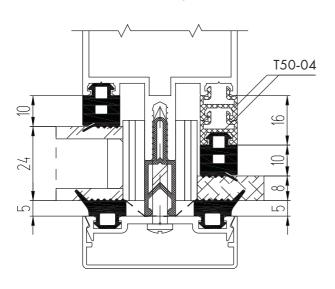


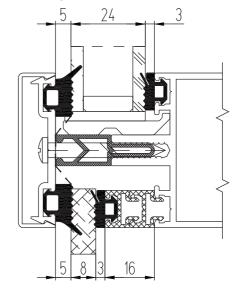
Выполнение дренажных отверстий в держателях и крышках



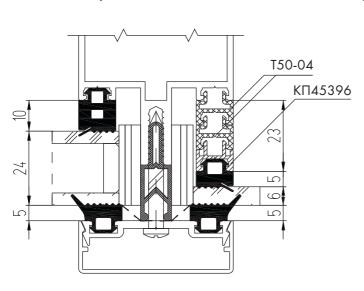


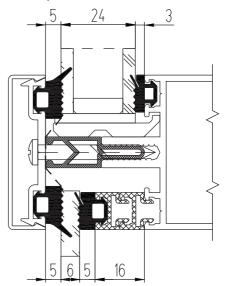

Узел перехода от стеклопакета 32 мм к стеклопакету 25 мм

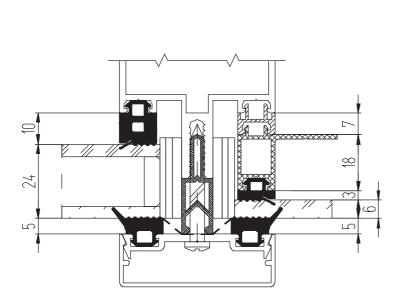

Узел перехода от стеклопакета 24 мм к стеклу 5 мм

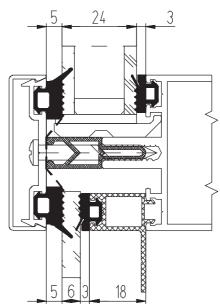


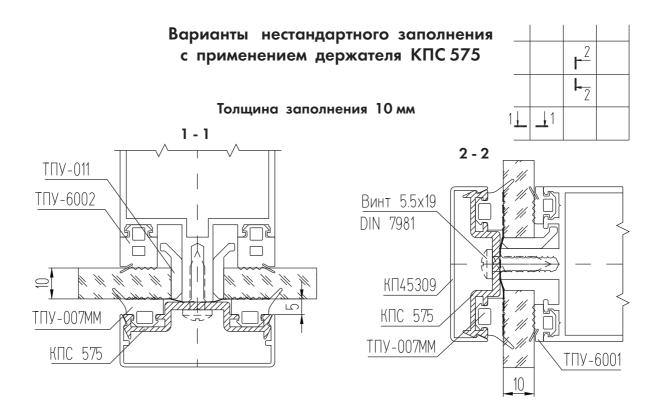
Узел перехода от стеклопакета 32 мм к стеклу 6 мм



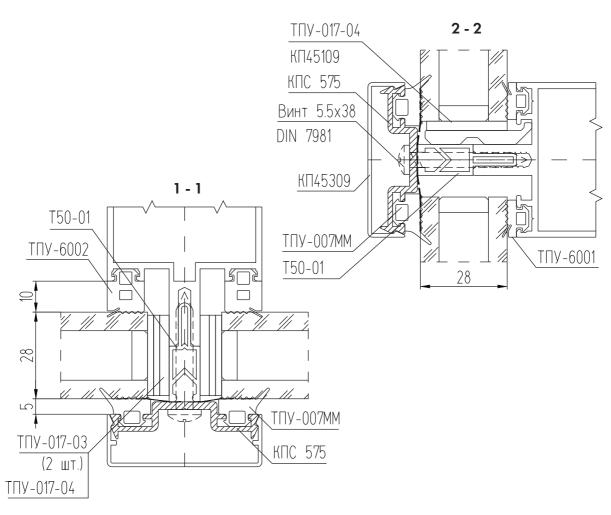

Узел перехода от стеклопакета 24 мм к стеклу 8 мм

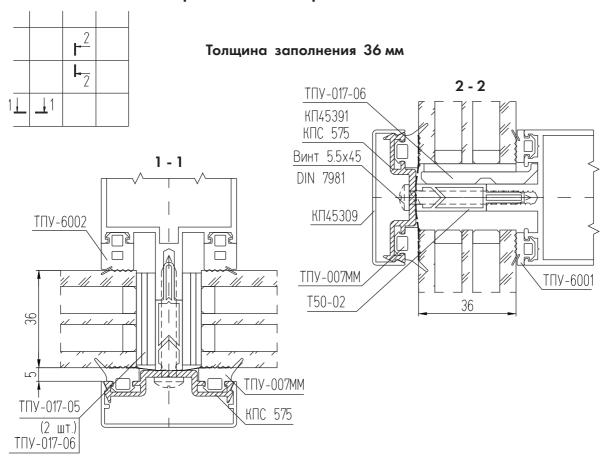


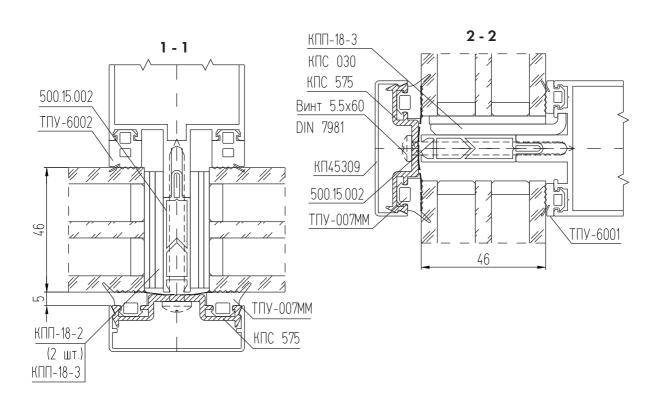

Узел перехода от стеклопакета 24 мм к стеклу 6 мм (с термовставкой T50-04)



Узел перехода от стеклопакета 24 мм к стеклу 6 мм (с термовставкой Т50-05)

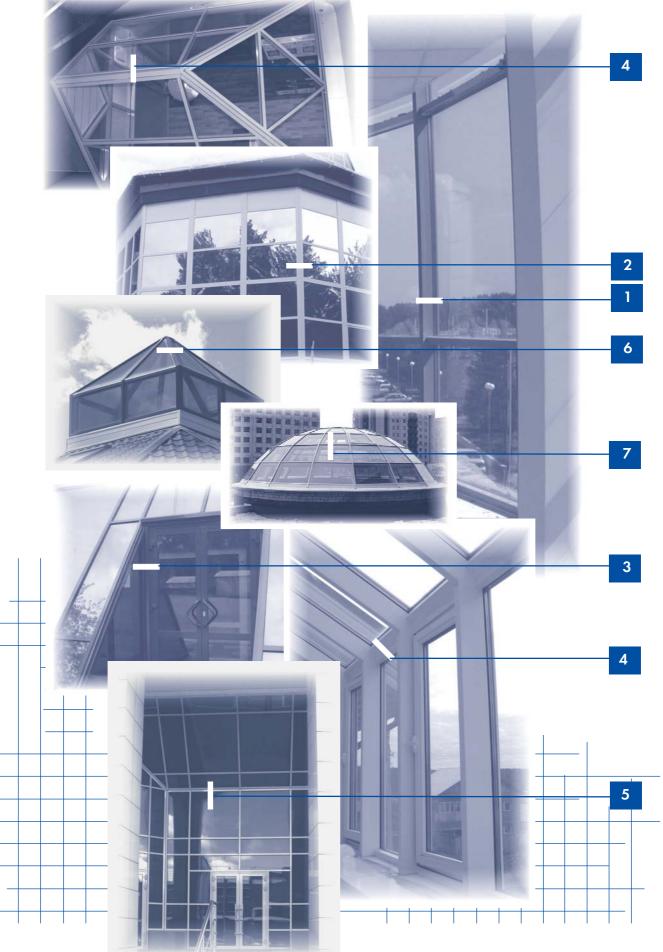




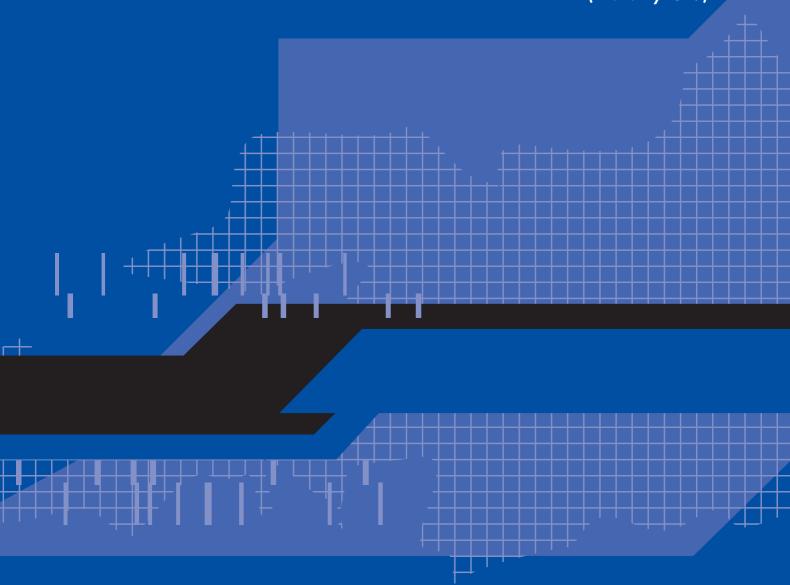

Толщина заполнения 28 мм

Варианты нестандартного заполнения с применением держателя КПС 575

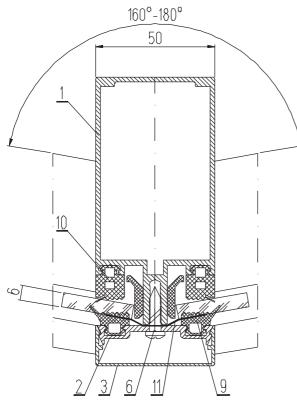
Толщина заполнения 46 мм

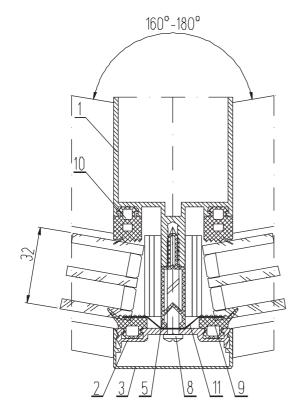


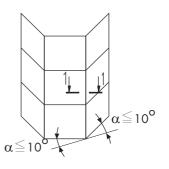
®

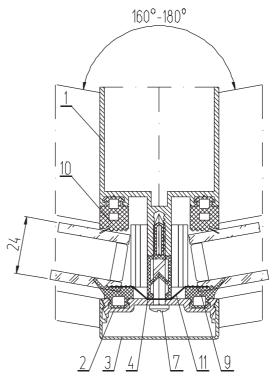


Сечения и узлы поворотов витража


- 1. Сечения и узлы внешнего поворота витража в горизонтальной плоскости
 2. Сечения внешнего поворота витража на одну сторону
 - 3. Сечения и узлы внутреннего поворота витража в горизонтальной плоскости
 - 4. Сечения и узлы внешнего наклона витража или конька 5. Сечения внутреннего наклона витража
 - 6. Пирамиды
 7. Фрагменты пространственных конструкций
 (в т. ч. купола)


Сечения поворота витража на угол не более 20° в горизонтальной плоскости



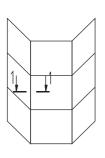


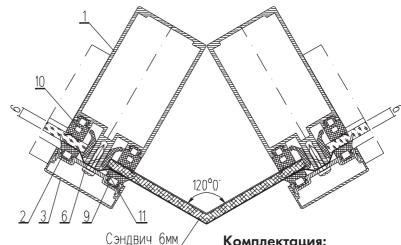
1-1 заполнение 32 мм

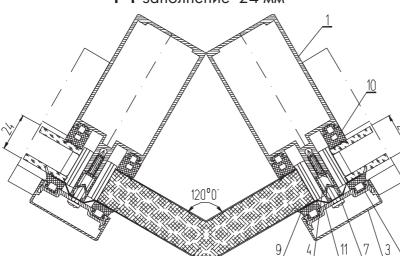
1-1 заполнение 24 мм

Комплектация:

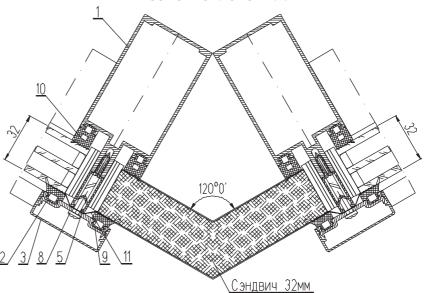
- 1. Стойка КП45370
- 2. Держатель КП45313-2
- 3. Крышка KП45310
- 4. Термовставка Т50-01
- Термовставка Т50-02
- 6. Винт D7981 A2 PZ 5,5x19
- 7. Винт D7981 A2 PZ 5,5x38
- 8. Винт D7981 A2 PZ 5,5x45
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6002
- 11. Герлен ЛТ 50х1,5





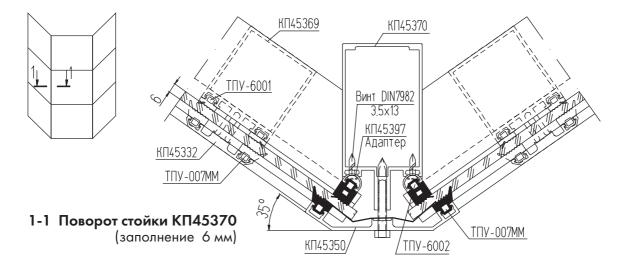

Сечения поворота витража на любой угол в горизонтальной плоскости

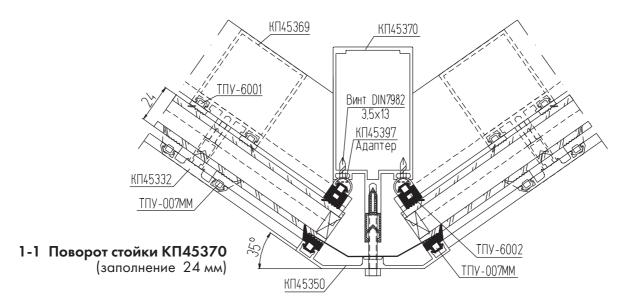
1-1 заполнение 6 мм

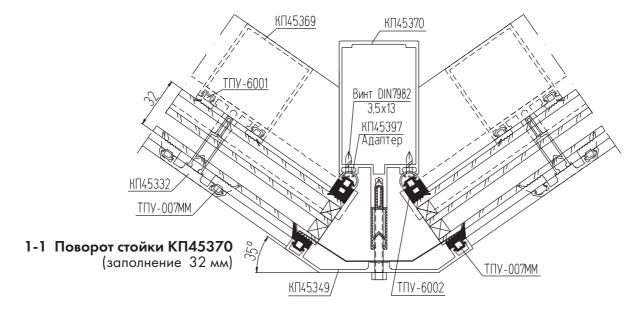

1-1 заполнение 24 мм

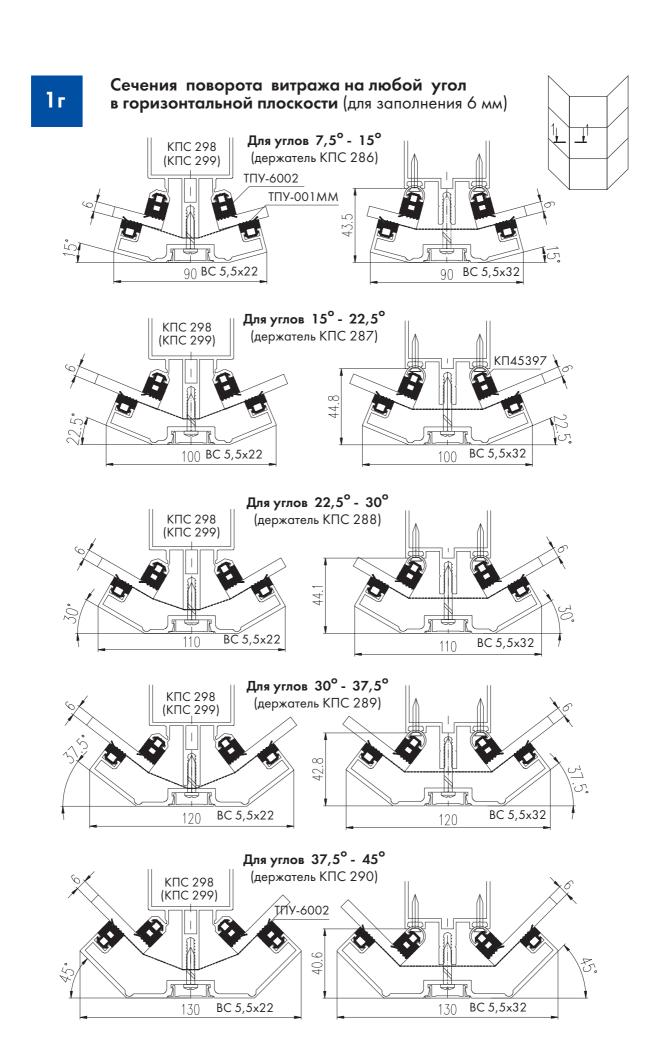
Сэндвич 24мм

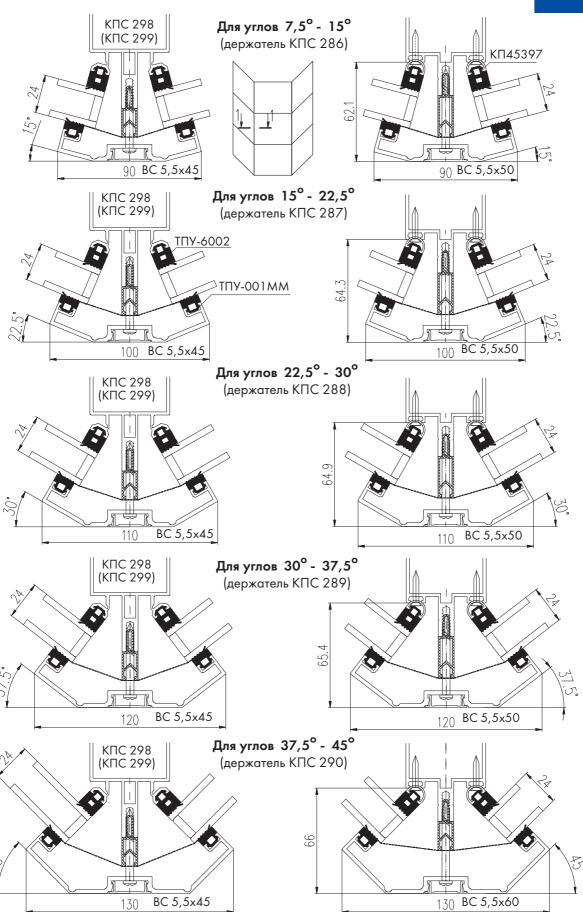
- Комплектация:
- 1. Стойка КП45370
- 2. Держатель КП45313-2
- 3. Крышка КП45310
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Винт D7981 A2 PZ 5,5х19 7. Винт D7981 A2 PZ 5,5х38 8. Винт D7981 A2 PZ 5,5х45
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6002
- 11. Герлен ЛТ 50х1,5

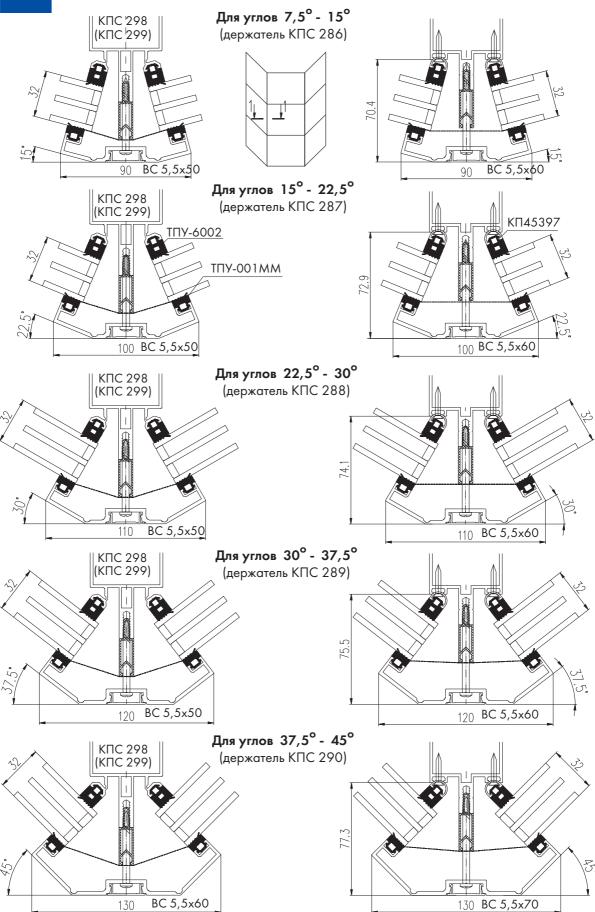

1-1 заполнение 32 мм

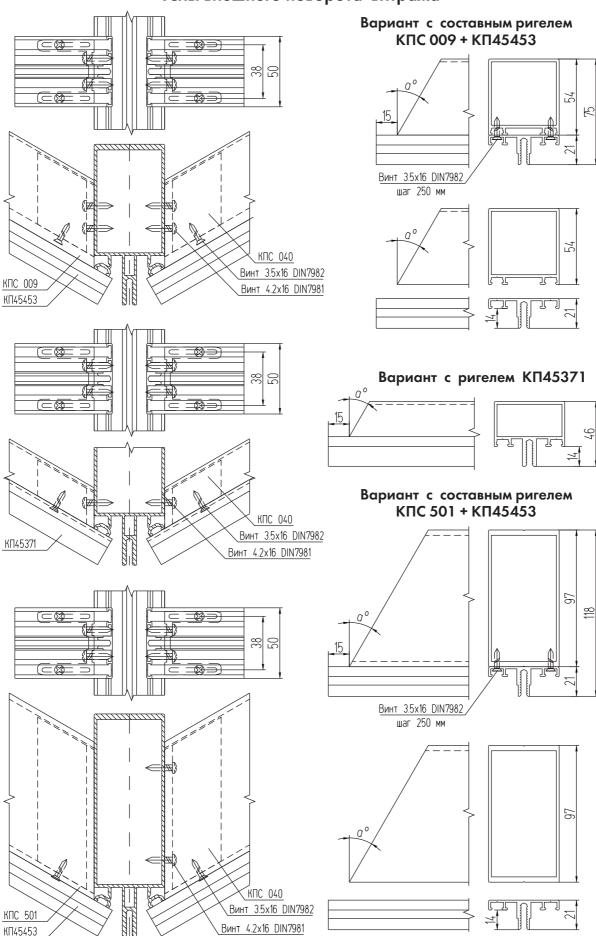


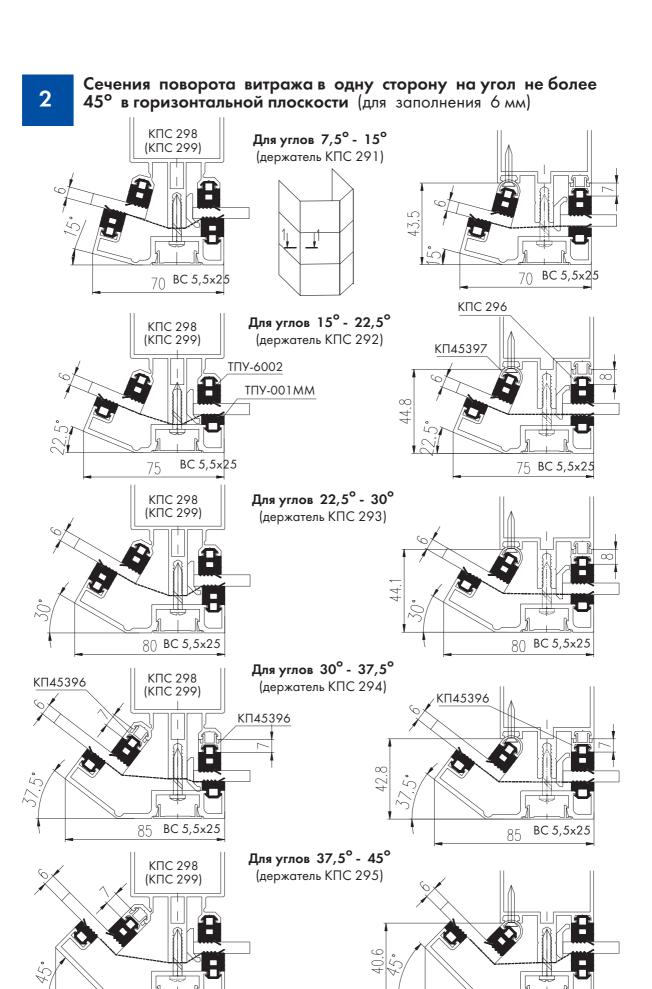



Сечения поворота витража на любой угол в горизонтальной плоскости с помощью адаптера КП45397 и держателей КП45349 и КП45350

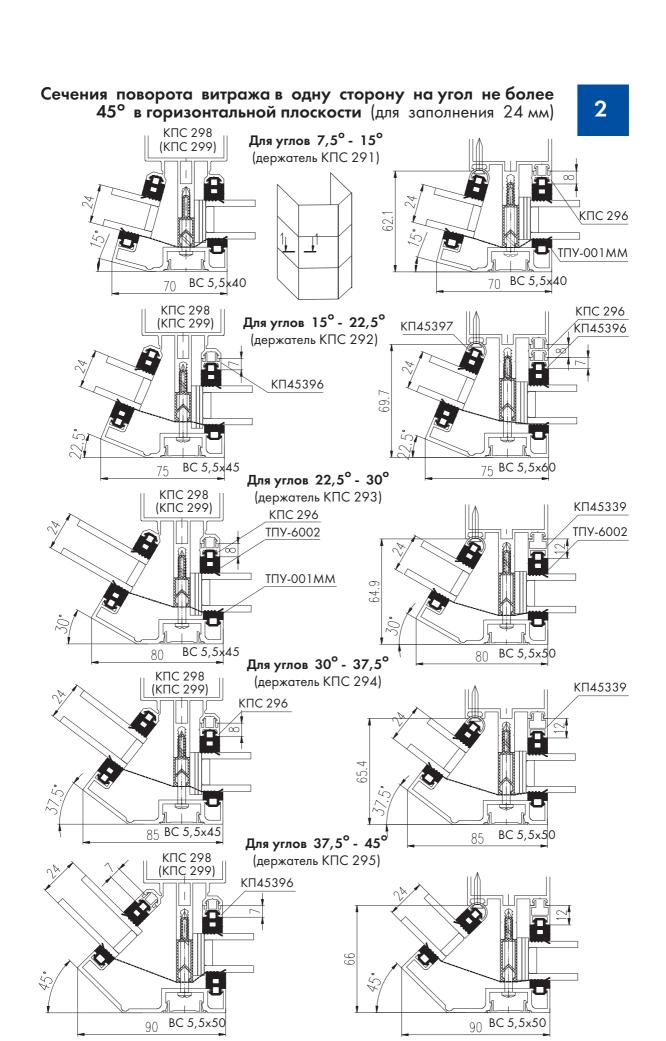






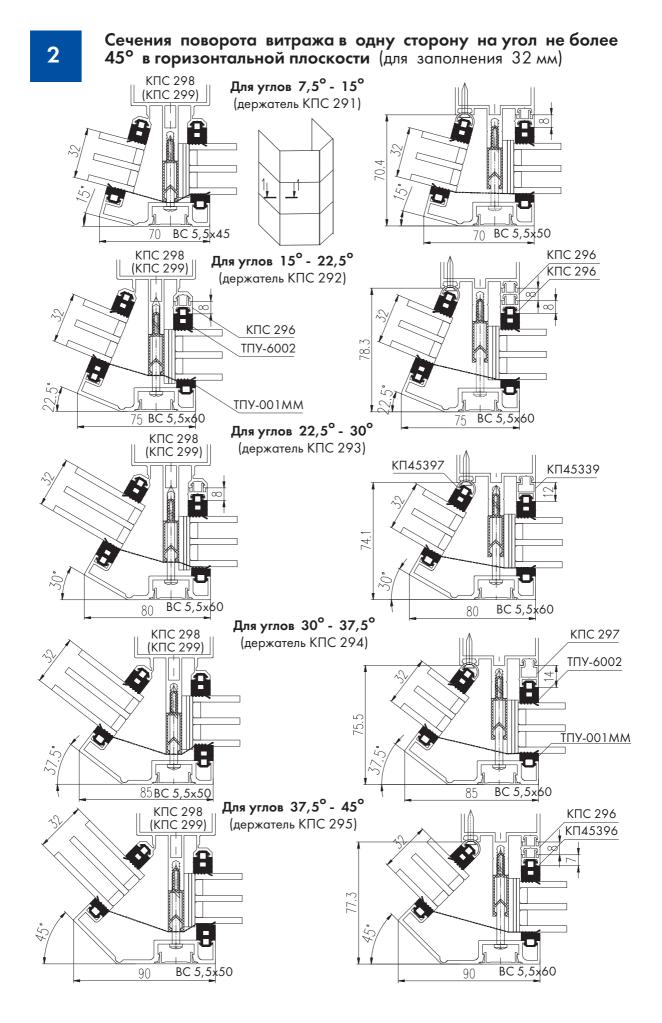


Узлы внешнего поворота витража

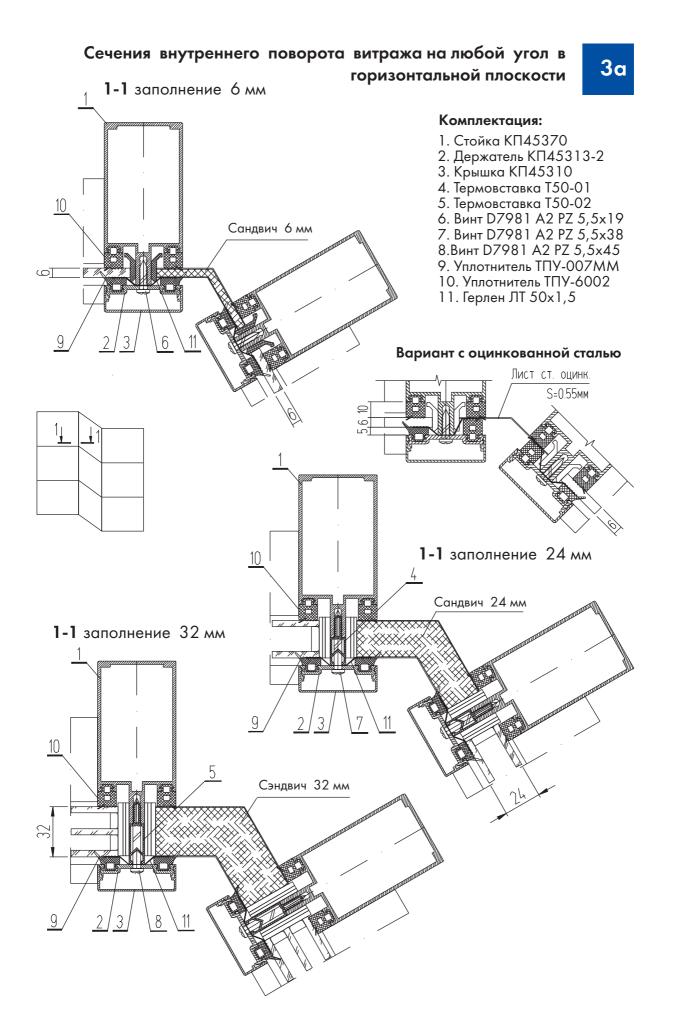


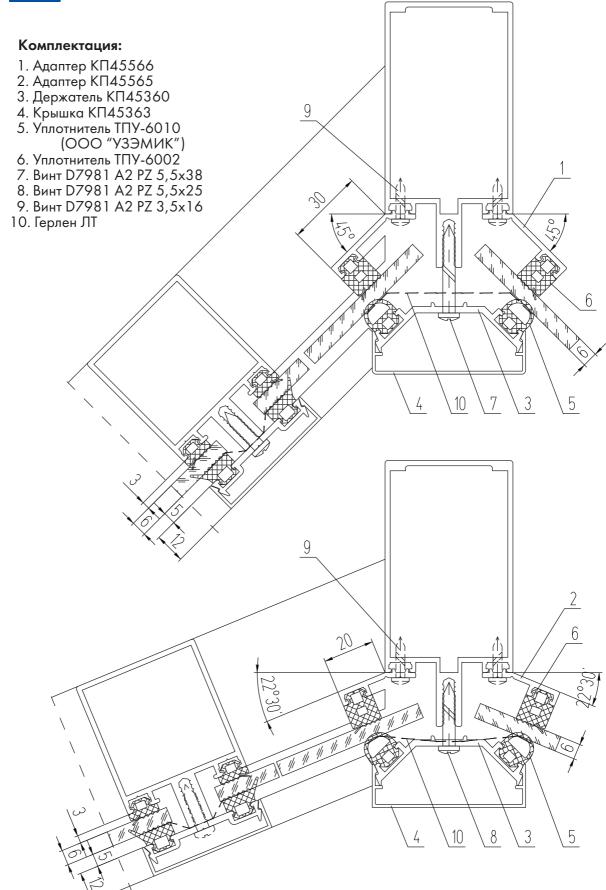
BC 5,5x25

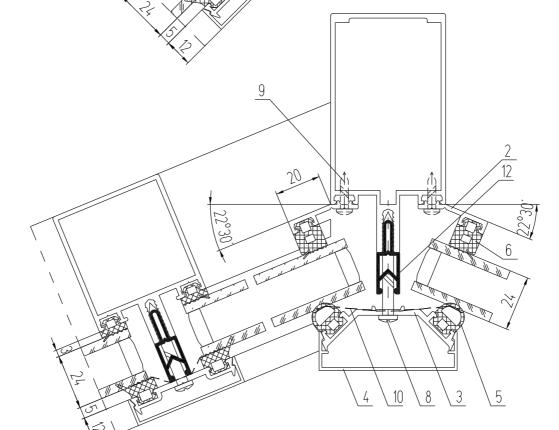
90

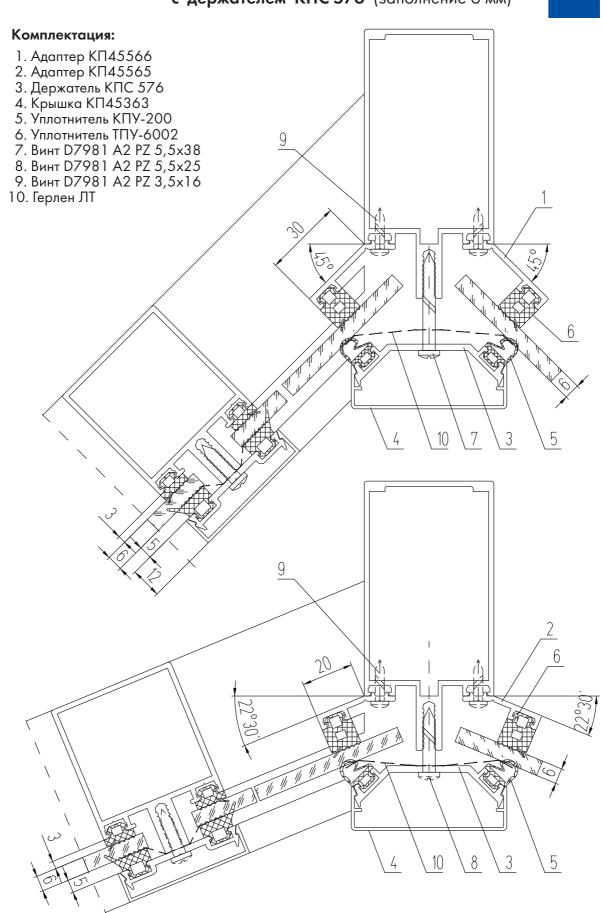

BC 5,5x25

90





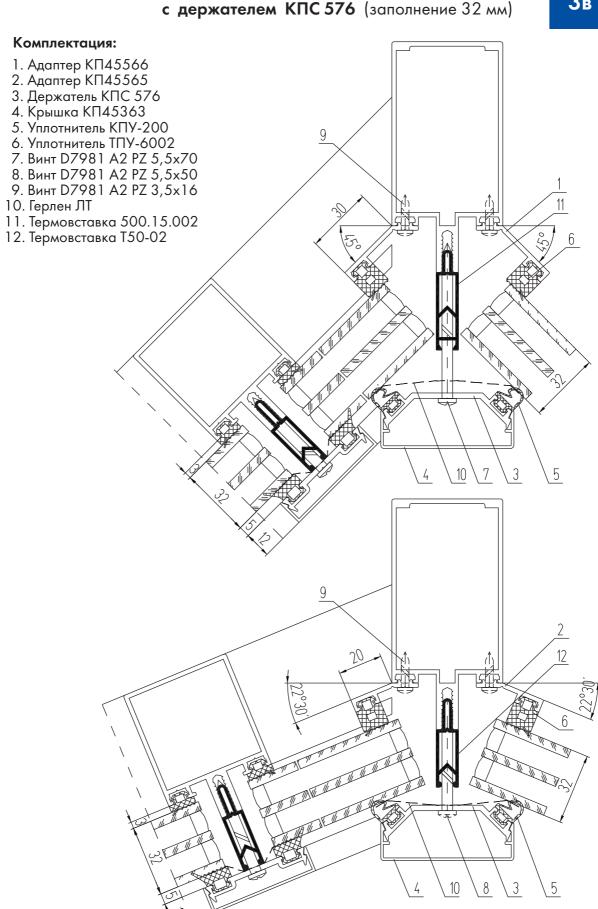

Сечения внутреннего поворота витража на угол 90° и 135° с держателем КП45360 (заполнение 6 мм)


3в

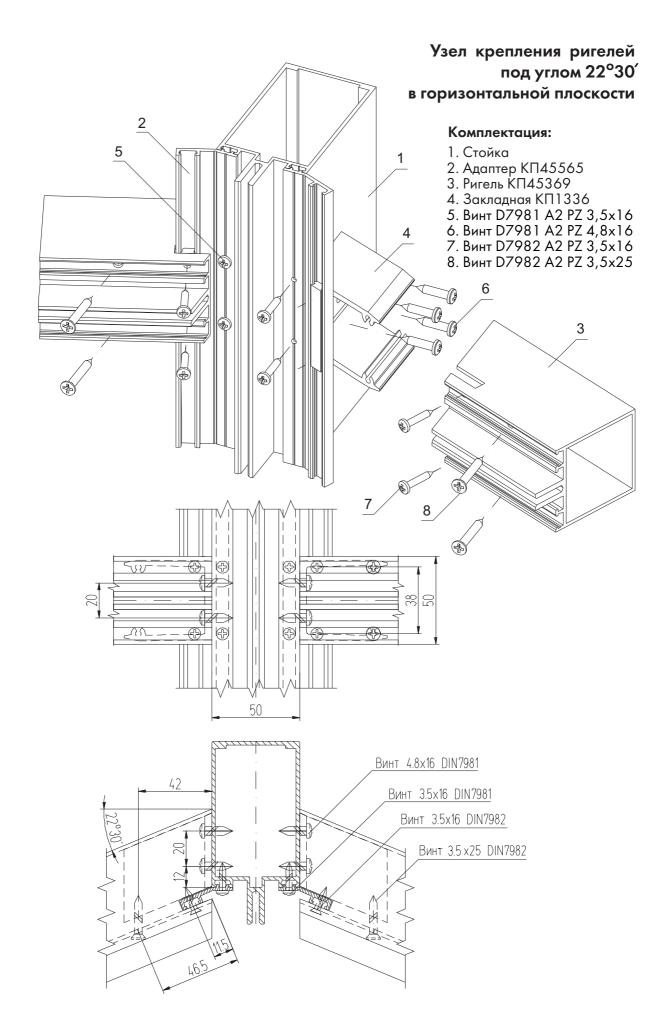
Сечения внутреннего поворота витража на угол 90° и 135° с держателем КП45360 (заполнение 32 мм)

Комплектация: 1. Адаптер КП45566 2. Адаптер КП45565 3. Держатель КП45360 4. Крышка КП45363 5. Уплотнитель ТПУ-6010 (ООО "УЗЭМИК") 6. Уплотнитель ТПУ-6002 7. Винт D7981 A2 PZ 5,5x70 8. Винт D7981 A2 PZ 5,5x50 9. Винт D7981 A2 PZ 3,5x16 10. Герлен ЛТ 11. Термовставка 500.15.002 6 12. Термовставка Т50-02 9 12 8 5 10

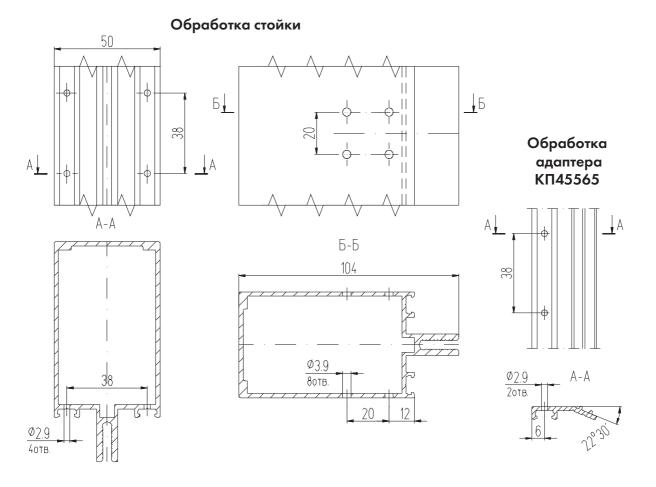
Сечения внутреннего поворота витража на угол 90° и 135° с держателем КПС 576 (заполнение 6 мм)

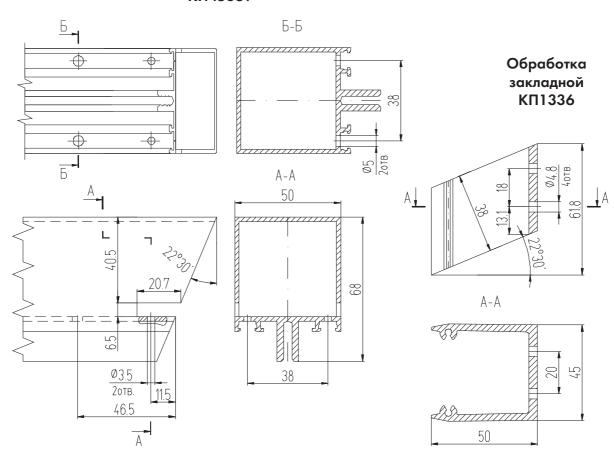


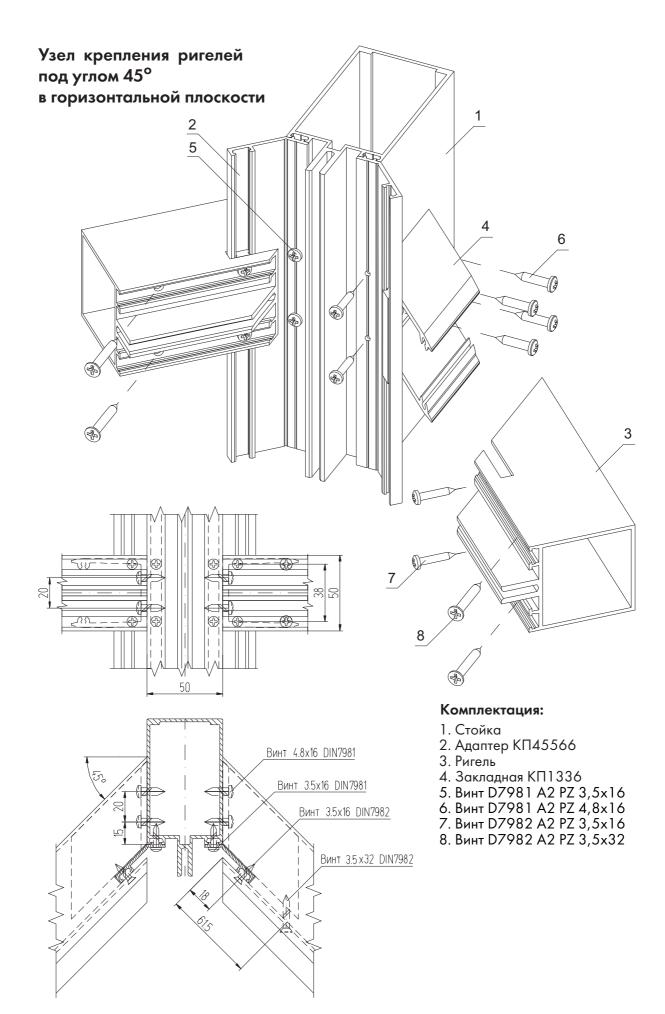
Сечения внутреннего поворота витража на угол 90° и 135° с держателем КПС 576 (заполнение 24 мм)


Комплектация: 1. Адаптер КП45566 2. Адаптер КП45565 3. Держатель КПС 576 4. Крышка КП45363 9 5. Уплотнитель КПУ-200 6. Уплотнитель ТПУ-6002 7. Винт D7981 A2 PZ 5,5x60 8. Винт D7981 A2 PZ 5,5х45 9. Винт D7981 A2 PZ 3,5x16 10. Герлен ЛТ 11. Термовставка 500.15.002 12. Термовставка Т50-01 10

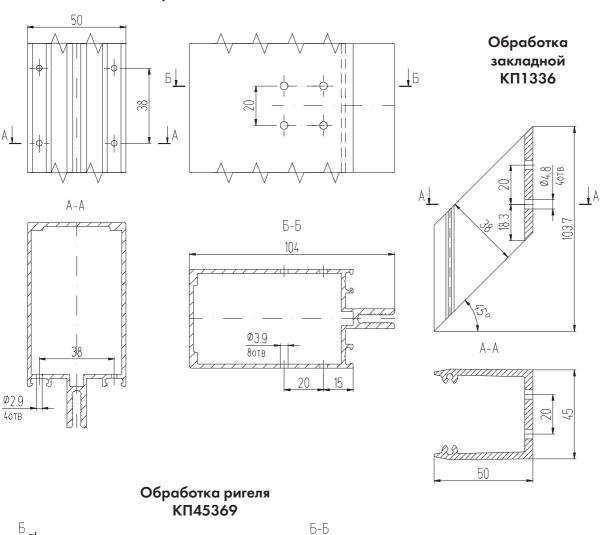
Сечения внутреннего поворота витража на угол 90° и 135° с держателем КПС 576 (заполнение 32 мм)

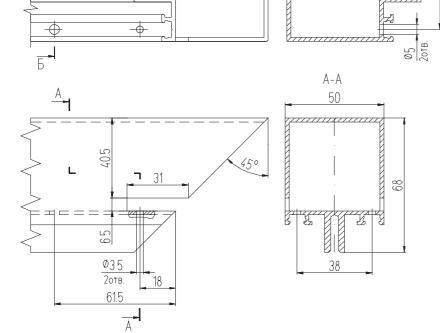




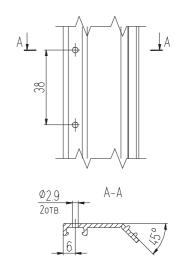


Обработка ригеля КП45369





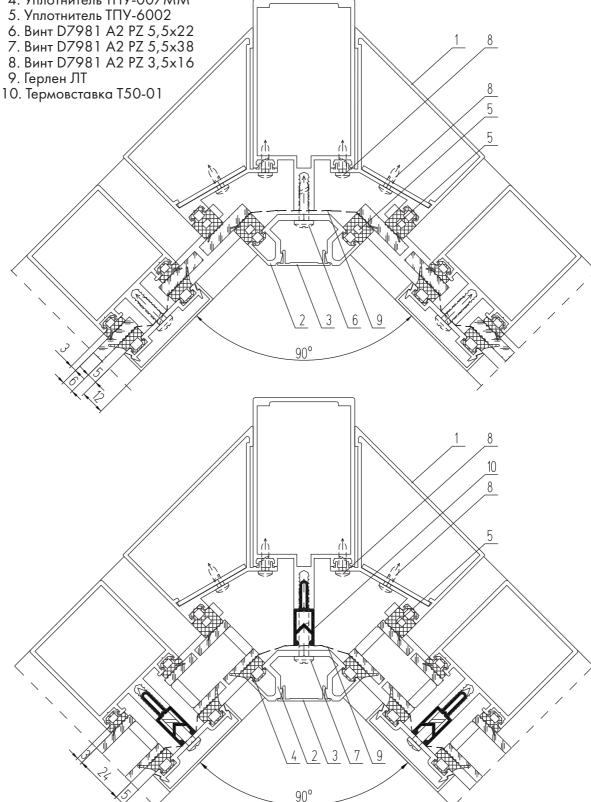
Обработка стойки



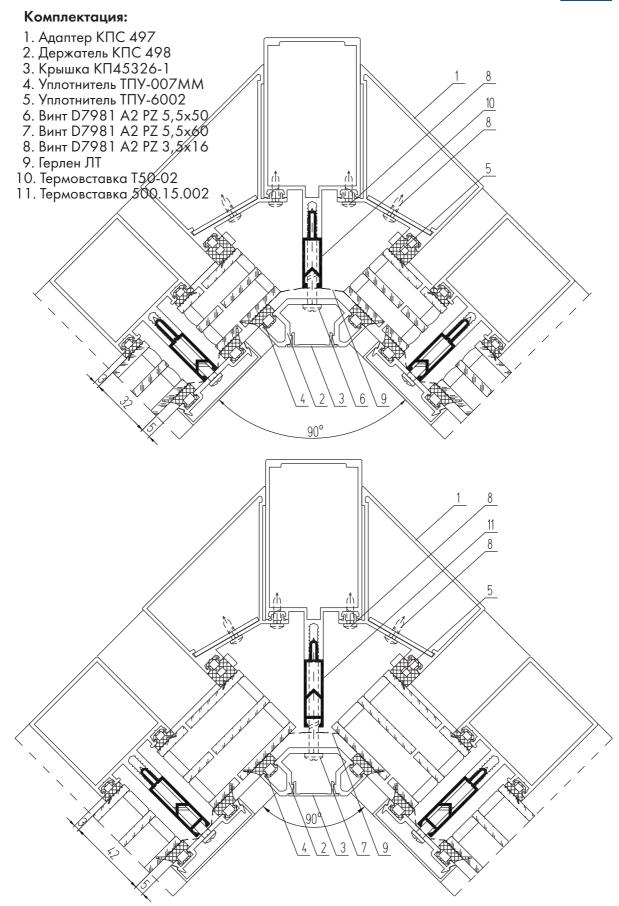
0

-

Обработка адаптера КП45566



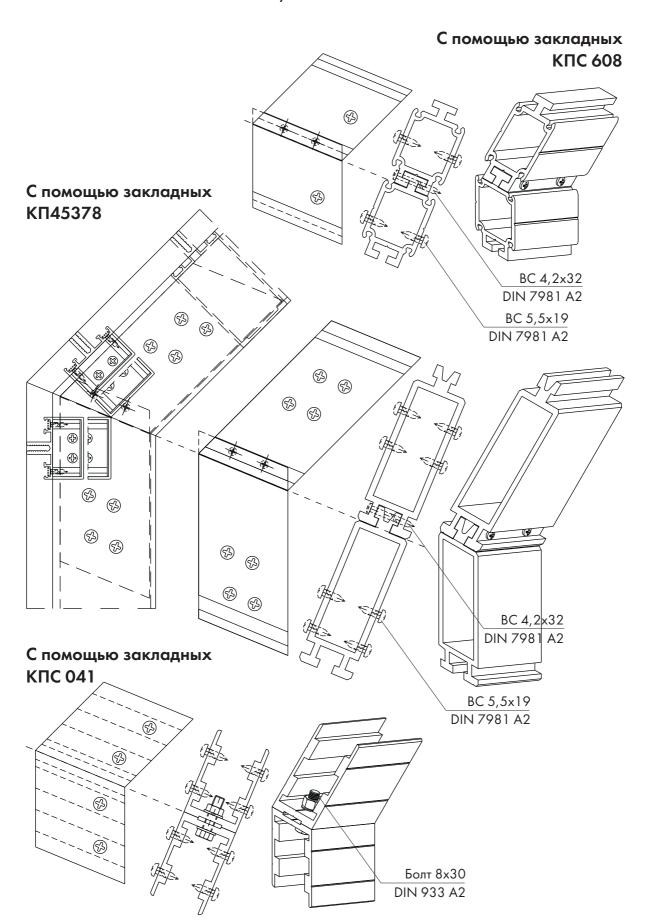
Сечения внутреннего поворота витража на угол 90° с адаптером КПС 497 и держателем КПС 498 (заполнение 6 и 24 мм)


Комплектация:

- 1. Адаптер КПС 497
- 2. Держатель КПС 498
- 3. Крышка КП45326-1
- 4. Уплотнитель ТПУ-007MM

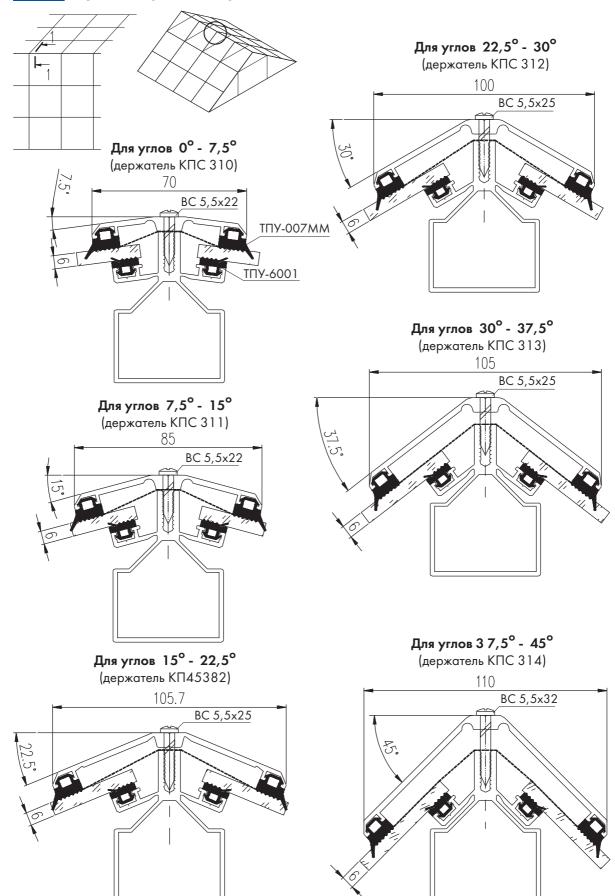


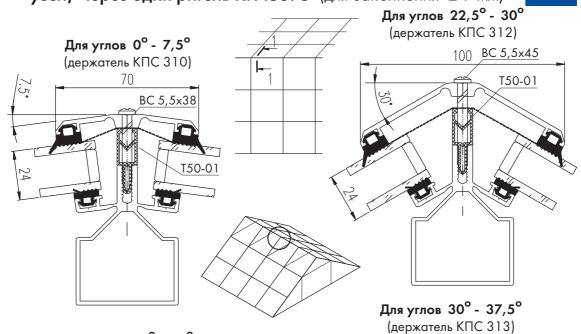
Сечения внутреннего поворота витража на угол 90° с адаптером КПС 497 и держателем КПС 498 (заполнение 32 и 42 мм)



B B B

166


Варианты узлов соединения стоек с помощью закладных КП45378, КПС 608 и КПС 041


4б

Сечения перехода вертикальной стойки в наклонную (коньковый узел) через один ригель КП45375 (для заполнения 6 мм)

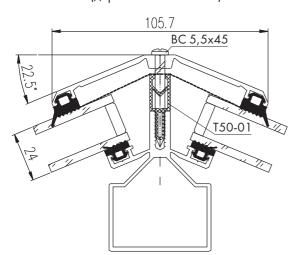
Сечения перехода вертикальной стойки в наклонную (коньковый узел) через один ригель КП45375 (для заполнения 24 мм)

Для углов 7,5° - 15° (держатель КПС 311)

85

BC 5,5×38

ТПУ-007ММ

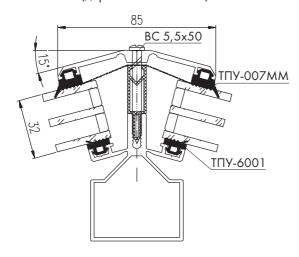

ТПУ-6001

105 BC 5,5x50

Для углов 15° - 22,5° (держатель КП45382)

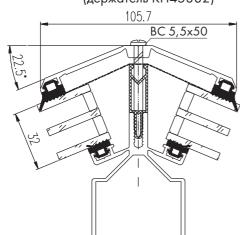
110 BC 5,5x60

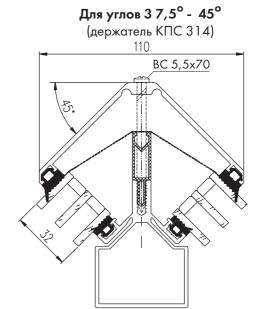
Для углов 3 7,5° - 45° (держатель КПС 314)

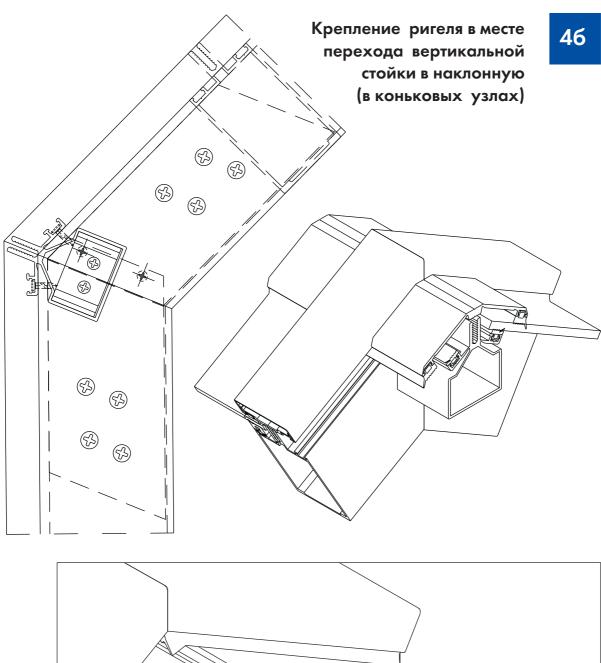

46

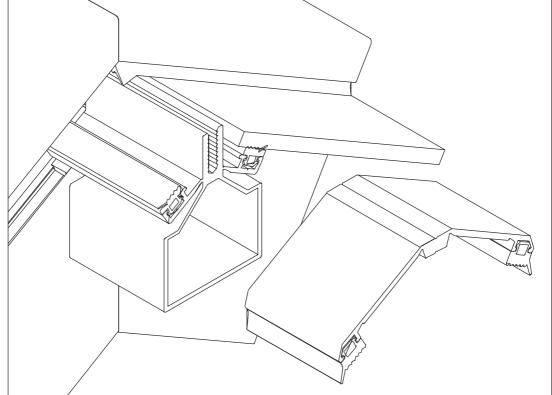
Сечения перехода вертикальной стойки в наклонную (коньковый узел) через один ригель КП45375 (для заполнения 32 мм)

Для углов 0° - 7,5° Для углов 22,5° - 30° (держатель КПС 310) (держатель КПС 312) 100 BC 5,5x60 BC 5,5x50 T50-0

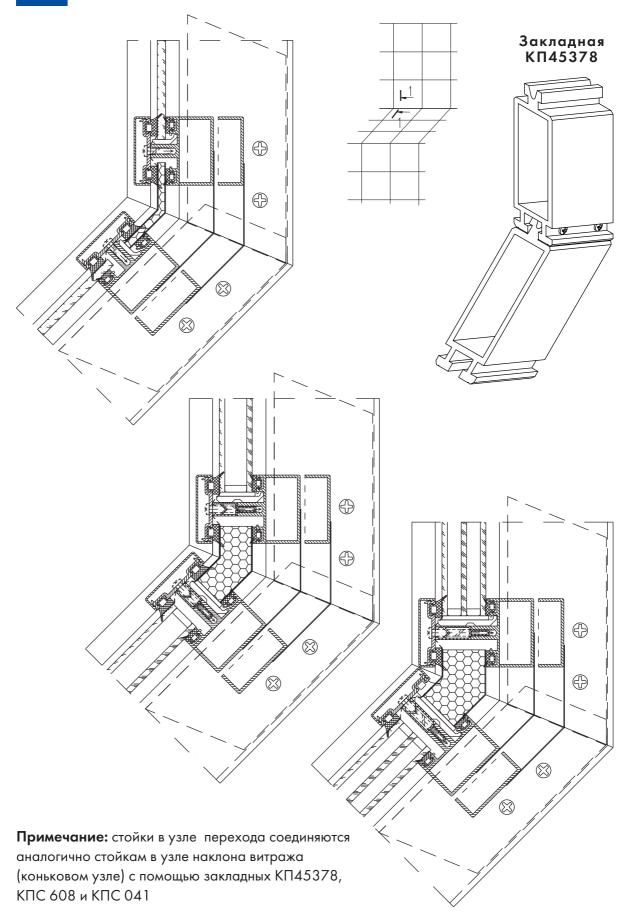

Для углов 7,5° - 15° (держатель КПС 311)

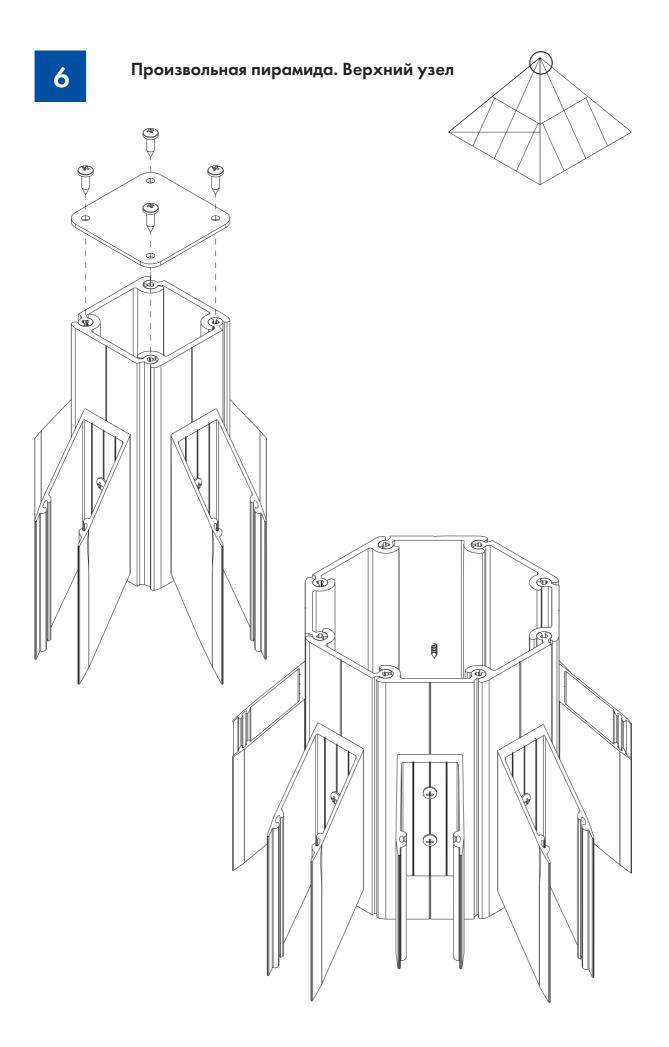

Для углов 30° - 37,5° (держатель КПС 313)




105 BC 5,5x60

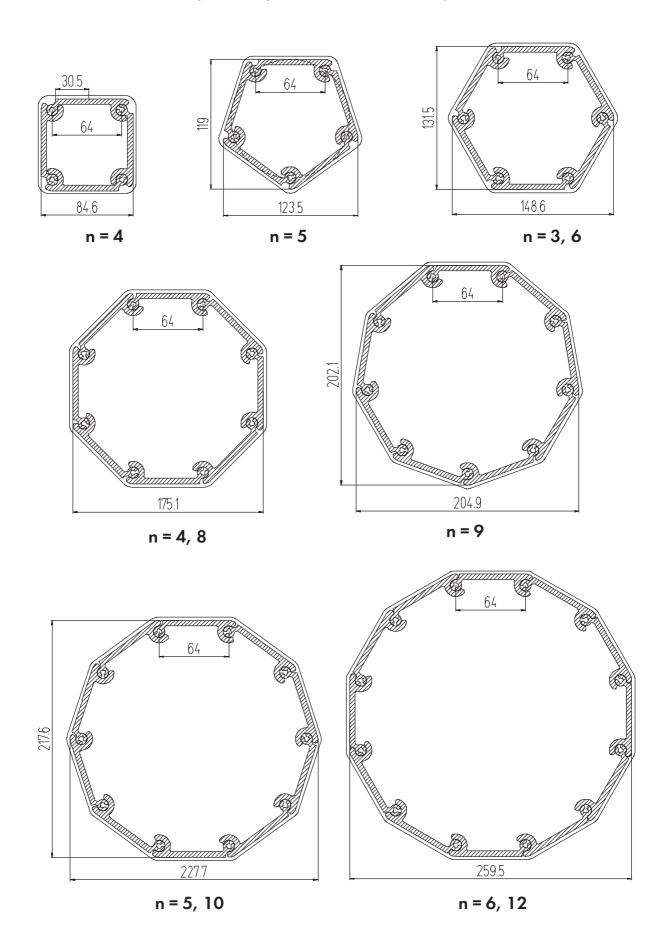
Для углов 15° - 22,5° (держатель КП45382)

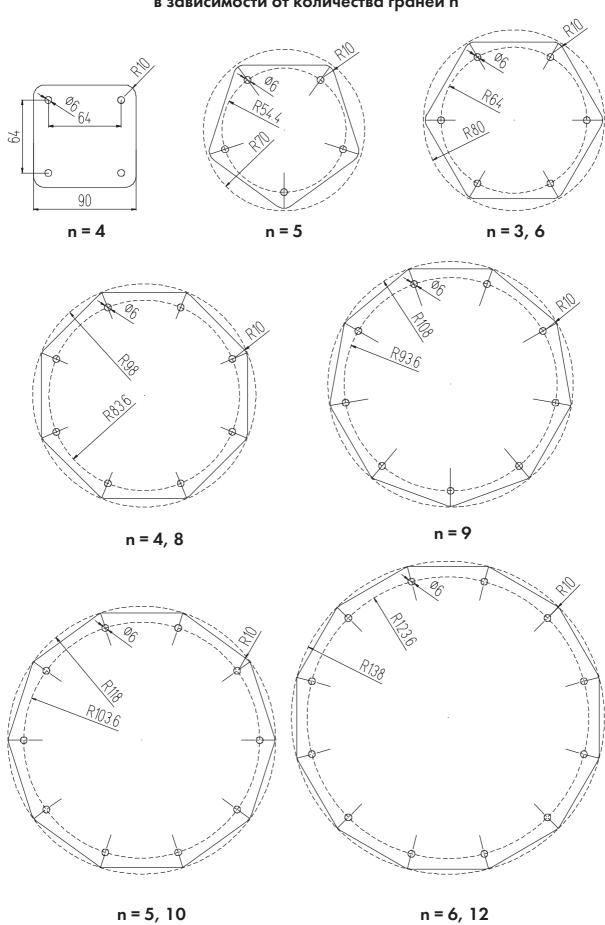




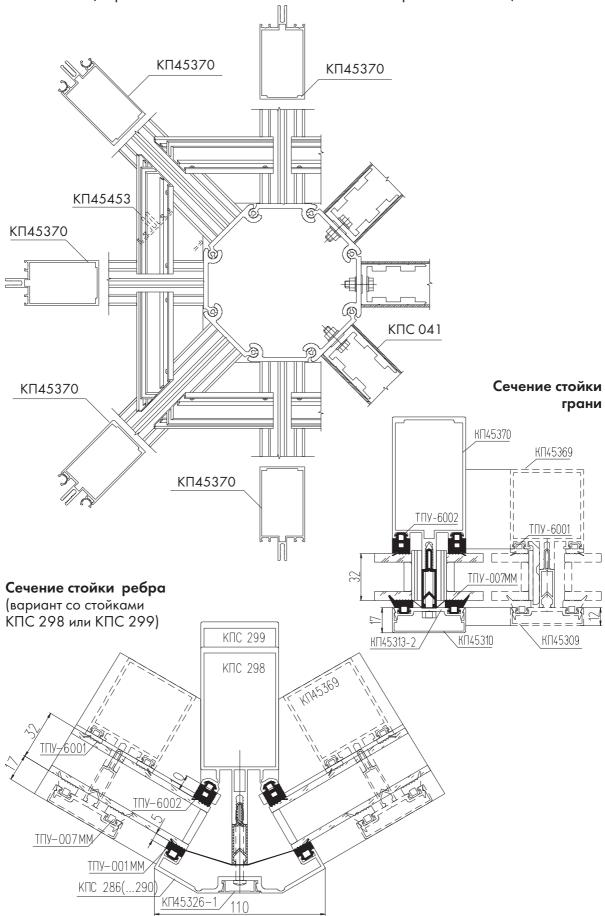
5

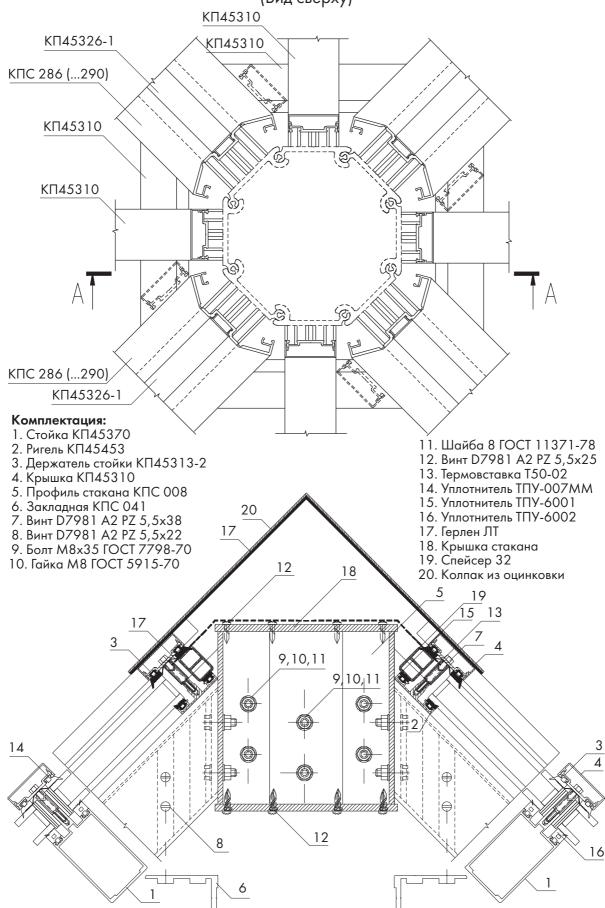
Сечения перехода наклонной стойки в вертикальную через два ригеля





Сборка профилей для изготовления стаканов вершин пирамид (n - количество граней)


Конфигурации крышек к стаканам для вершины пирамиды в зависимости от количества граней n



Каркас вершины 4-гранной пирамиды. Вид сверху.

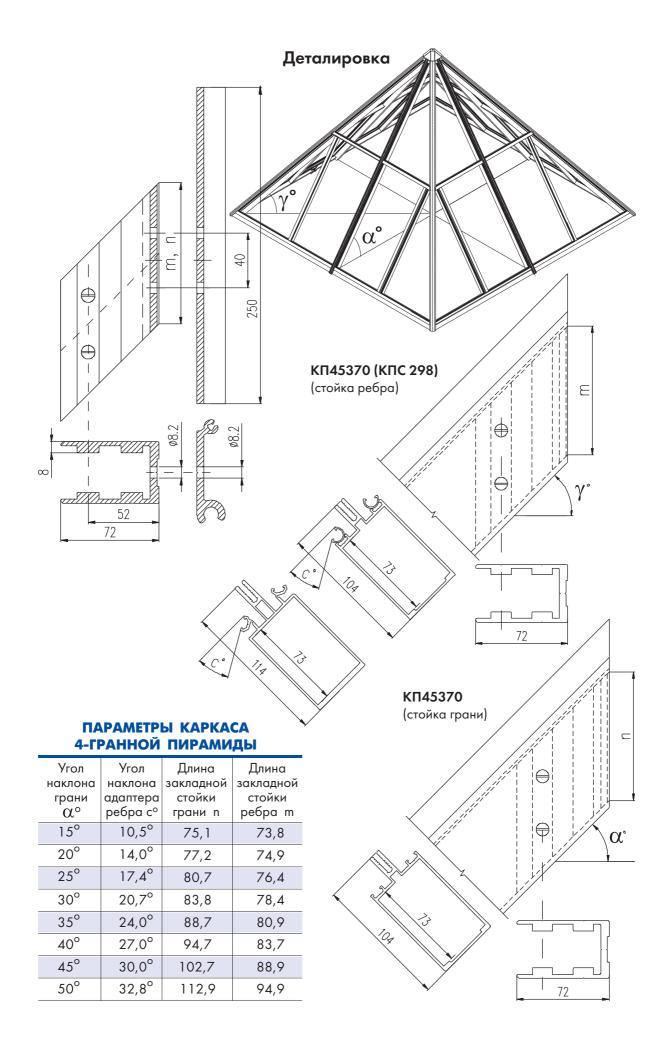
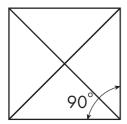
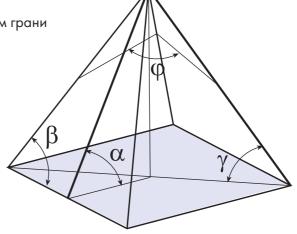

(вариант со стойками КП45370 и адаптером КП45397)

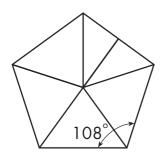
Схема установки держателей и крышек. Вершина пирамиды (Вид сверху)


ТАБЛИЦА УГЛОВ 4-ГРАННОЙ ПИРАМИДЫ


lpha - угол наклона грани пирамиды

 γ - угол наклона ребра пирамиды

 $\dot{\phi}$ - угол между гранями пирамиды


α	β	γ	φ
10°	45,44°	7,11°	165,89°
11°	45,53°	7,83°	164,49°
12°	45,63°	8,55°	163,09°
13°	45,74°	9,27°	161,69°
14°	45,86°	10,00°	160,30°
15°	45,99°	10,73°	158,91°
16°	46,13°	11,76°	157,52°
17°	46,28°	12,20°	156,14°
18°	46,44°	12,94°	154,76°
19°	46,60°	13,68°	153,38°
20°	46,78°	14,43°	152,01°
21°	46,97°	15,19°	150,64°
22°	47,16°	15,94°	149,28°
23°	47,37°	16,71°	147,92°
24°	47,59°	17,48°	146,57°
25°	47,81°	18,25°	145,22°
26°	48,05°	19,03°	143,88°
27°	48,30°	19,81°	142,55°
28°	48,56°	20,61°	141,22°
29°	48,83°	21,40°	139,90°
30°	49,11°	22,21°	138,59°
31°	49,40°	23,02°	137,29°
32°	49,70°	23,84°	135,99°
33°	50,01°	24,66°	134,70°
34°	50,34°	25,50°	133,42°

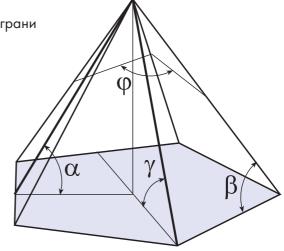
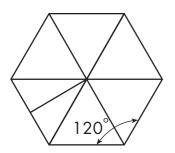
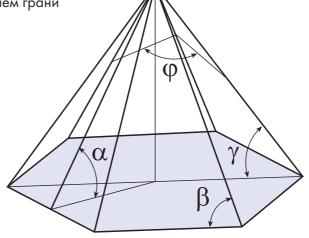

α	β	γ	φ
35°	50,68°	26,34°	132,15°
36°	51,03°	27,19°	130,88°
37°	51,39°	28,05°	129,63°
38°	51,76°	28,92°	128,39°
39°	52,15°	29,80°	127,15°
40°	52,55°	30,68°	125,93°
41°	52,96°	31,58°	124,72°
42°	53,38°	32,48°	123,52°
43°	53,82°	33,40°	122,34°
44°	54,27°	34,33°	121,16°
45°	54,74°	35,26°	120,00°
46°	55,21°	36,21°	118,85°
47°	55,71°	37,17°	11 <i>7,7</i> 2°
48°	56,21°	38,14°	116,60°
49°	56,73°	39,13°	115,49°
50°	57,27°	40,12°	114,40°
51°	57,82°	41,13°	113,33°
52°	58,38°	42,15°	112,27°
53°	58,96°	43,18°	111,23°
54°	59,55°	44,12°	110,21°
55°	60,16°	45,28°	109,21°
56°	60,79°	46,35°	108,22°
57°	61,43°	47,44°	107,26°
58°	62,08°	48,53°	106,31°
59°	62,75°	49,64°	105,38°
60°	63,43°	50,77°	104,48°

ТАБЛИЦА УГЛОВ 5-ГРАННОЙ ПИРАМИДЫ

- lpha угол наклона грани пирамиды
- eta угол между ребром пирамиды и основанием грани
- $\stackrel{\cdot}{\gamma}$ угол наклона ребра пирамиды
- $\dot{\phi}$ угол между гранями пирамиды



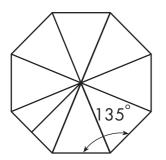

α	β	γ	φ
10°	54,42°	8,12°	168,28°
11°	54,50°	8,94°	167,12°
12°	54,60°	9,76°	165,96°
13°	54,70°	10,58°	164,80°
14°	54,82°	11,40°	163,65°
15°	54,94°	12,23°	162,50°
16°	55,07°	13,06°	161,35°
17°	55,21°	13,89°	160,21°
18°	55,36°	14,73°	159,07°
19°	55,51°	15,57°	157,94°
20°	55,68°	16,41°	156,81°
21°	55,85°	17,25°	155,68°
22°	56,03°	18,10°	154,56°
23°	56,23°	18,95°	153,45°
24°	56,43°	19,81°	152,34°
25°	56,64°	20,67°	151,23°
26°	56,85°	21,53°	150,14°
27°	57,08°	22,40°	149,05°
28°	57,32°	23,28°	147,96°
29°	57,57°	24,15°	146,89°
30°	57,82°	25,04°	145,82°
31°	58,09°	25,92°	144,76°
32°	58,36°	26,82°	143,70°
33°	58,64°	27,72°	142,66°
34°	58,94°	28,62°	141,62°

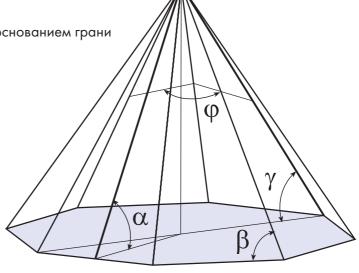
α	β	γ	φ
35°	59,24°	29,53°	140,59°
36°	59,55°	30,45°	139,58°
37°	59,88°	31,37°	138,57°
38°	60,21°	32,30°	137,57°
39°	60,55°	33,23°	136,58°
40°	60,90°	34,17°	135,60°
41°	61,26°	35,12°	134,64°
42°	61,63°	36,07°	133,68°
43°	62,02°	37,03°	132,74°
44°	62,41°	38,00°	131,80°
45°	62,81°	38,97°	130,88°
46°	63,22°	39,95°	129,98°
47°	63,64°	40,94°	129,08°
48°	64,07°	41,94°	128,20°
49°	64,51°	42,94°	127,33°
50°	64,97°	43,95°	126,48°
51°	65,43°	44,97°	125,64°
52°	65,90°	46,00°	124,82°
53°	66,38°	47,03°	124,01°
54°	66,88°	48,07°	123,21°
55°	67,38°	49,12°	122,44°
56°	67,89°	50,18°	121,67°
57°	68,41°	51,25°	120,93°
58°	68,94°	52,32°	120,20°
59°	69,48°	53,40°	119,49°
60°	70,04°	54,49°	118,80°

- lpha угол наклона грани пирамиды
- eta угол между ребром пирамиды и основанием грани
- γ угол наклона ребра пирамиды
- $\dot{\phi}$ угол между гранями пирамиды

			ı
α	β	γ	φ
10°	60,38°	8,68°	170,04°
11°	60,46°	9,56°	169,05°
12°	60,55°	10,43°	168,07°
13°	60,64°	11,31°	167,08°
14°	60,74°	12,18°	166,11°
15°	60,85°	13,06°	165,13°
16°	60,97°	13,95°	164,16°
17°	61,10°	14,83°	163,19°
18°	61,23°	15,72°	162,22°
19°	61,37°	16,60°	161,26°
20°	61,52°	17,50°	160,31°
21°	61,68°	18,39°	159,36°
22°	61,84°	19,28°	158,41°
23°	62,01°	20,18°	157,47°
24°	62,19°	21,09°	156,53°
25°	62,38°	21,99°	155,60°
26°	62,57°	22,90°	154,68°
27°	62,78°	23,81°	153,76°
28°	62,99°	24,72°	152,85°
29°	63,21°	25,64°	151,94°
30°	63,43°	26,57°	151,05°
31°	63,68°	27,49°	150,15°
32°	63,91°	28,42°	149,27°
33°	64,16°	29,35°	148,40°
34°	64,42°	30,29°	147,53°

α	β	γ	φ
35°	64,69°	31,23°	146,67°
36°	64,96°	32,18°	145,82°
37°	65,25°	33,13°	144,98°
38°	65,54°	34,08°	144,14°
39°	65,83°	35,04°	143,32°
40°	66,14°	36,01°	142,51°
41°	66,46°	36,97°	141,70°
42°	66,78°	37,95°	140,91°
43°	67,11°	38,92°	140,12°
44°	67,45°	39,91°	139,35°
45°	67,79°	40,89°	138,59°
46°	68,15°	41,89°	137,84°
47°	68,51°	42,88°	137,10°
48°	68,88°	43,89°	136,37°
49°	69,25°	44,89°	135,66°
50°	69,64°	45,90°	134,96°
51°	70,03°	46,92°	134,27°
52°	70,43°	47,94°	133,59°
53°	70,84°	48,97°	132,93°
54°	71,25°	50,01°	132,28°
55°	71,68°	51,04°	131,64°
56°	72,11°	52,09°	131,02°
57°	72,54°	53,13°	130,41°
58°	72,99°	54,19°	129,82°
59°	73,44°	55,25°	129,24°
60°	73,90°	56,31°	128,68°

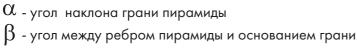

ТАБЛИЦА УГЛОВ 8-ГРАННОЙ ПИРАМИДЫ


lpha - угол наклона грани пирамиды

eta - угол между ребром пирамиды и основанием грани

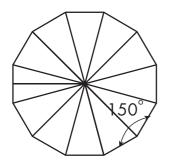
 γ - угол наклона ребра пирамиды

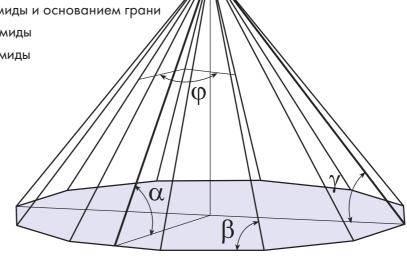
 Φ - угол между гранями пирамиды

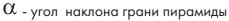




α	β	γ	φ
10°	67,81°	9,25°	172,38°
11°	67,87°	10,18°	171,63°
12°	67,94°	11,11°	170,87°
13°	68,02°	12,04°	170,12°
14°	68,10°	12,97°	169,38°
15°	68,19°	13,90°	168,63°
16°	68,29°	14,84°	167,89°
17°	68,39°	15,77°	167,15°
18°	68,50°	16,71°	166,42°
19°	68,61°	17,65°	165,69°
20°	68,73°	18,59°	164,96°
21°	68,86°	19,53°	164,24°
22°	68,99°	20,47°	163,52°
23°	69,13°	21,41°	162,80°
24°	69,27°	22,36°	162,09°
25°	69,42°	23,31°	161,39°
26°	69,58°	24,26°	160,69°
27°	69,74°	25,21°	159,99°
28°	69,91°	26,16°	159,30°
29°	70,09°	27,12°	158,62°
30°	70,27°	28,08°	157,94°
31°	70,45°	29,04°	157,27°
32°	70,65°	30,00°	156,60°
33°	70,84°	30,96°	155,94°
34°	71,05°	31,93°	155,29°

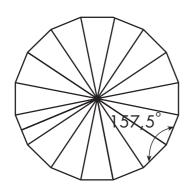

α	β	γ	φ
35°	71,26°	32,90°	154,64°
36°	71,47°	33,87°	154,00°
37°	71,70°	34,85°	153,37°
38°	71,92°	35,82°	152,75°
39°	72,16°	36,80°	152,13°
40°	72,40°	37,78°	151,52°
41°	72,64°	38,77°	150,92°
42°	72,89°	39,76°	150,33°
43°	73,15°	40,75°	149,74°
44°	73,41°	41,74°	149,17°
45°	73,68°	42,73°	148,60°
46°	73,95°	43,73°	148,04°
47°	74,23°	44,73°	147,49°
48°	74,51°	45,74°	146,96°
49°	74,80°	46,74°	146,43°
50°	75,09°	47,75°	145,91°
51°	75,39°	48,77°	145,40°
52°	75,69°	49,78°	144,90°
53°	76,00°	50,80°	144,41°
54°	76,32°	51,82°	143,93°
55°	76,64°	52,84°	143,96°
56°	76,96°	53,87°	143,01°
57°	77,29°	54,90°	142,56°
58°	<i>7</i> 7,62°	55,93°	142,13°
59°	<i>77</i> ,96°	56,96°	141,70°
60°	78,30°	58,00°	141,29°

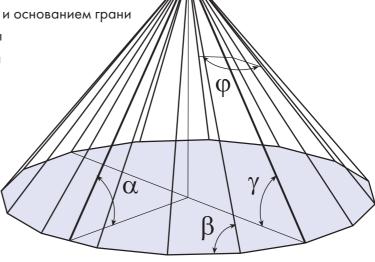

ТАБЛИЦА УГЛОВ 12-ГРАННОЙ ПИРАМИДЫ



α	β	γ	φ
10°	75,22°	9,67°	174,85°
11°	75,26°	10,63°	174,34°
12°	75,31°	11,60°	173,83°
13°	75,37°	12,57°	173,32°
14°	75,43°	13,54°	172,82°
15°	75,49°	14,51°	172,32°
16°	75,56°	15,48°	171,82°
17°	75,63°	16,45°	171,32°
18°	75,70°	17,42°	170,83°
19°	75,78°	18,40°	170,33°
20°	75,87°	19,37°	169,84°
21°	75,96°	20,34°	169,36°
22°	76,05°	21,32°	168,87°
23°	76,14°	22,29°	168,39°
24°	76,25°	23,27°	167,91°
25°	76,35°	24,25°	167,44°
26°	76,46°	25,23°	166,97°
27°	76,57°	26,20°	166,50°
28°	76,69°	27,18°	166,04°
29°	76,81°	28,17°	165,58°
30°	76,94°	29,15°	165,13°
31°	77,06°	30,13°	164,68°
32°	77,20°	31,11°	164,23°
33°	77,33°	32,10°	163,79°
34°	77,48°	33,09°	163,36°

36° 37° 38° 39° 40° 41° 42° 43°	77,62° 77,77° 77,92° 78,08° 78,24° 78,40° 78,57° 78,74° 78,91° 79,09°	34,07° 35,06° 36,05° 37,04° 38,03° 40,02° 41,01° 42,01° 43,01°	162,93° 162,50° 162,08° 161,66° 161,25° 160,85° 160,45° 160,05° 159,67° 158,29°
37° 38° 39° 40° 41° 42° 43°	77,92° 78,08° 78,24° 78,40° 78,57° 78,74° 78,91° 79,09°	36,05° 37,04° 38,03° 39,03° 40,02° 41,01° 42,01° 43,01°	162,08° 161,66° 161,25° 160,85° 160,45° 160,05° 159,67°
38° 39° 40° 41° 42° 43°	78,08° 78,24° 78,40° 78,57° 78,74° 78,91° 79,09°	37,04° 38,03° 39,03° 40,02° 41,01° 42,01° 43,01°	161,66° 161,25° 160,85° 160,45° 160,05° 159,67°
39° 40° 41° 42° 43°	78,24° 78,40° 78,57° 78,74° 78,91° 79,09°	38,03° 39,03° 40,02° 41,01° 42,01° 43,01°	161,25° 160,85° 160,45° 160,05° 159,67°
40° 41° 42° 43°	78,40° 78,57° 78,74° 78,91° 79,09°	39,03° 40,02° 41,01° 42,01° 43,01°	160,85° 160,45° 160,05° 159,67°
41° 42° 43°	78,57° 78,74° 78,91° 79,09°	40,02° 41,01° 42,01° 43,01°	160,45° 160,05° 159,67°
42° 43°	78,74° 78,91° 79,09°	41,01° 42,01° 43,01°	160,05° 159,67°
43°	78,91° 79,09°	42,01° 43,01°	159,67°
	79,09°	43,01°	
			158,29°
44°	79 27°		1 '
45°	17,21	44,01°	158,91°
46°	79,46°	45,01°	158,54°
47°	79,64°	46,01°	158,18°
48°	79,84°	47,01°	157,82°
49°	80,03°	48,01°	157,47°
50°	80,23°	49,02°	157,13°
51°	80,43°	50,03°	156,79°
52°	80,63°	51,03°	156,46°
53°	80,84°	52,04°	156,14°
54°	81,05°	53,05°	155,83°
55°	81,26°	54,06°	155,52°
56°	81,48°	55,07°	155,22°
57°	81,70°	56,09°	154,93°
58°	81,92°	57,10°	154,64°
59°	82,14°	58,12°	154,36°
60°	82,37°	59,13°	154,10°

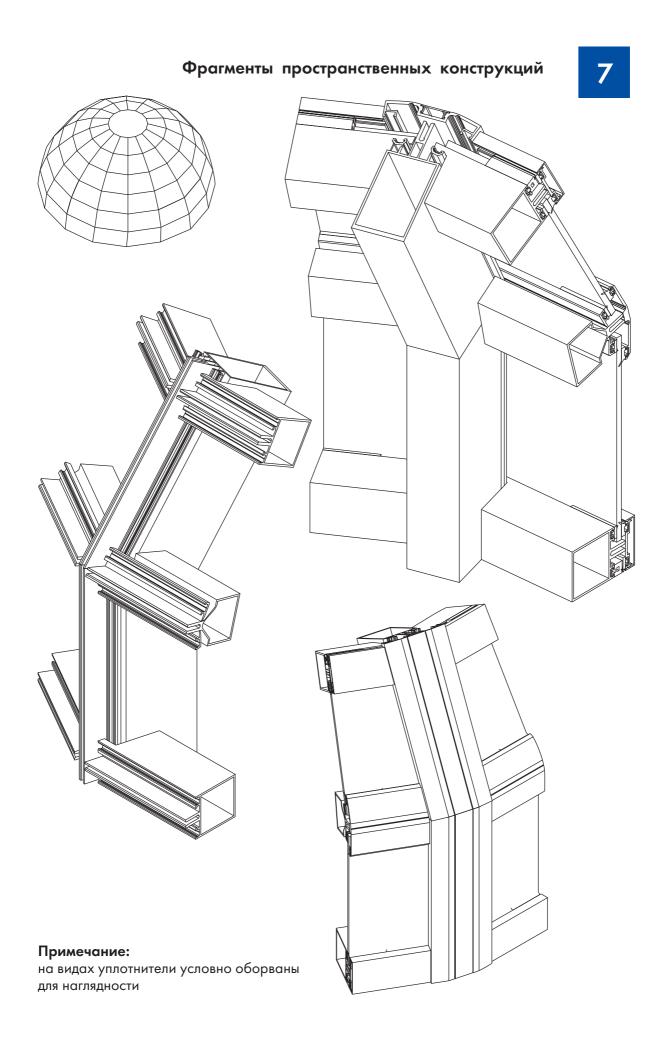

ТАБЛИЦА УГЛОВ 16-ГРАННОЙ ПИРАМИДЫ

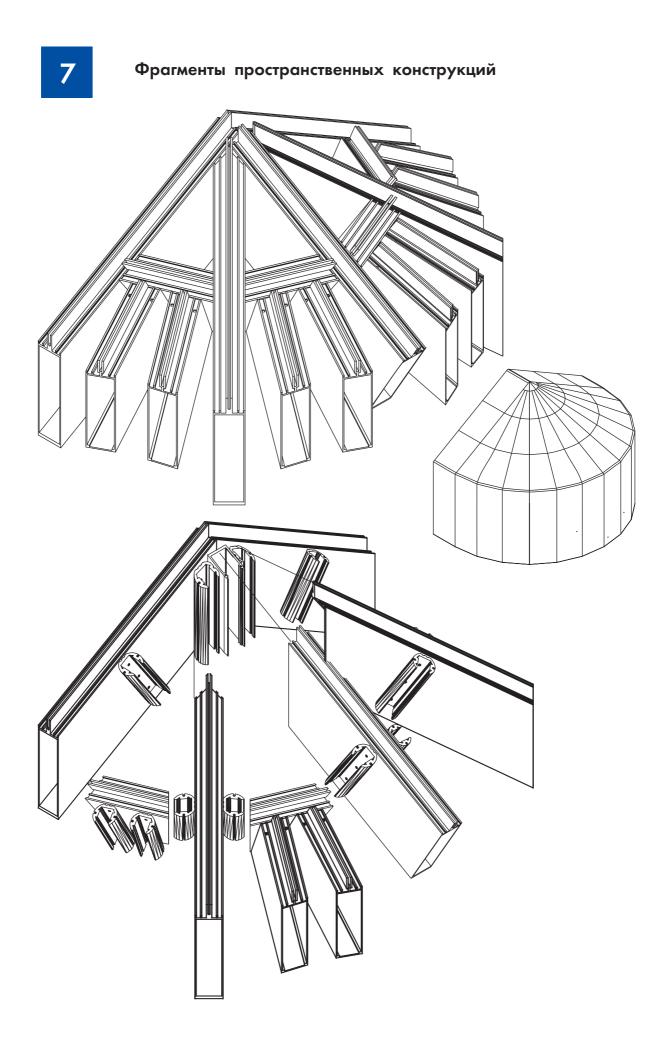


eta - угол между ребром пирамиды и основанием грани

 γ - угол наклона ребра пирамиды

 Φ - угол между гранями пирамиды

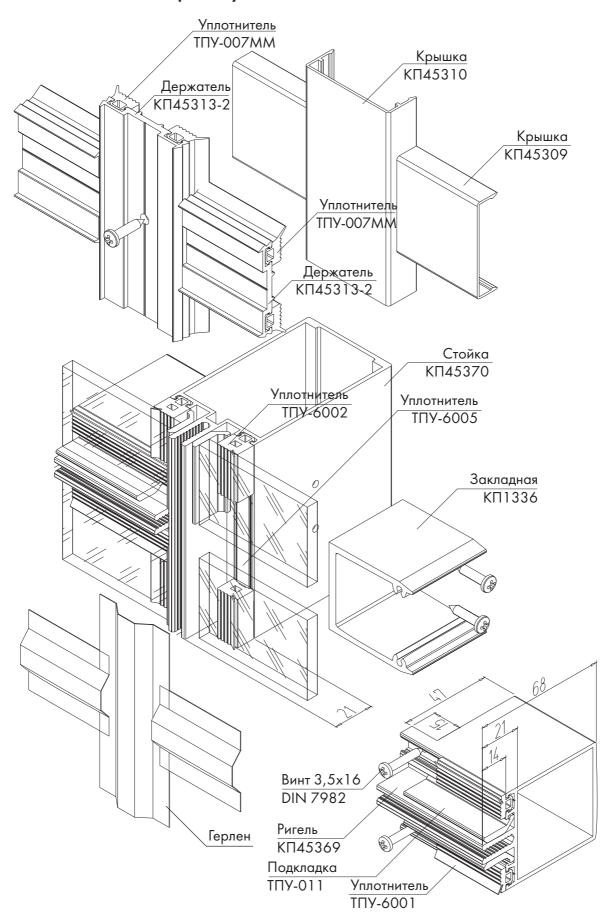



α	β	γ	φ
10°	78,92°	9,81°	176,12°
11°	78,95°	10,79°	175,73°
12°	78,99°	11,78°	175,35°
13°	79,03°	12,76°	174,97°
14°	79,08°	13,74°	174,59°
15°	79,12°	14,72°	174,21°
16°	<i>7</i> 9,18°	15,71°	173,84°
17°	79,23°	16,69°	173,46°
18°	79,29°	17,68°	173,09°
19°	79,35°	18,66°	172,72°
20°	79,41°	19,65°	172,35°
21°	79,48°	20,63°	171,98°
22°	79,55°	21,62°	171,62°
23°	79,62°	22,60°	171,26°
24°	79,70°	23,59°	170,90°
25°	79,78°	24,58°	170,54°
26°	79,86°	25,56°	170,19°
27°	79,95°	26,55°	169,84°
28°	80,04°	27,54°	169,49°
29°	80,13°	28,53°	169,15°
30°	80,23°	29,52°	168,80°
31°	80,32°	30,51°	168,47°
32°	80,43°	31,50°	168,13°
33°	80,53°	32,49°	167,80°
34°	80,64°	33,49°	167,47°

α	β	γ	φ
35°	80,75°	34,48°	167,15°
36°	80,86°	35,47°	166,83°
37°	80,97°	36,47°	166,52°
38°	81,09°	37,46°	166,20°
39°	81,21°	38,46°	165,90°
40°	81,34°	39,45°	165,59°
41°	81,46°	40,45°	165,29°
42°	81,59°	41,45°	165,00°
43°	81,72°	42,45°	164,71°
44°	81,86°	43,44°	164,42°
45°	81,99°	44,44°	164,14°
46°	82,13°	45,44°	163,87°
47°	82,27°	46,45°	163,59°
48°	82,42°	47,45°	163,33°
49°	82,57°	48,45°	163,07°
50°	82,71°	49,45°	162,81°
51°	82,86°	50,46°	162,56°
52°	83,02°	51,46°	162,31°
53°	83,17°	52,46°	162,07°
54°	83,33°	53,47°	161,84°
55°	83,49°	54,48°	161,61°
56°	83,65°	55,48°	161,38°
57°	83,82°	56,49°	161,17°
58°	83,98°	57,50°	160,95°
59°	84,15°	58,51°	160,75°
60°	84,32°	59,52°	160,55°

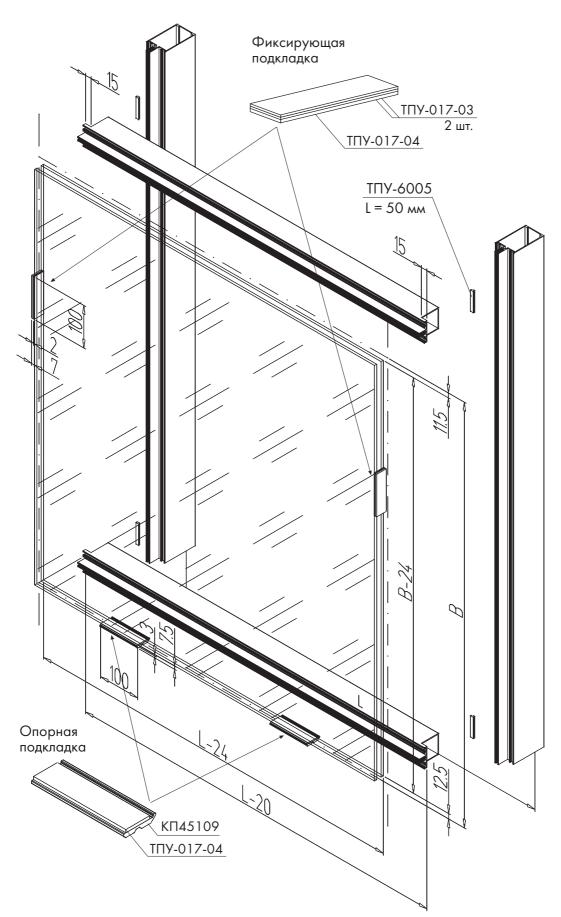
МОНТАЖНЫЕ УЗЛЫ И СЕЧЕНИЯ

Порядок монтажа и герметизации
Установка стекол и стеклопакетов
Сечения крайних стоек и ригелей
Верхние и нижние сечения крепления наклонных стоек
2-х и 3-х опорная схемы крепления стоек
Узлы примыкания к несущим конструкциям
Деформационный шов
Нижние узлы крепления стоек
Верхние узлы крепления стоек
Промежуточные узлы крепления стоек
Обработка деталей
Крепление с помощью стальных кронштейнов

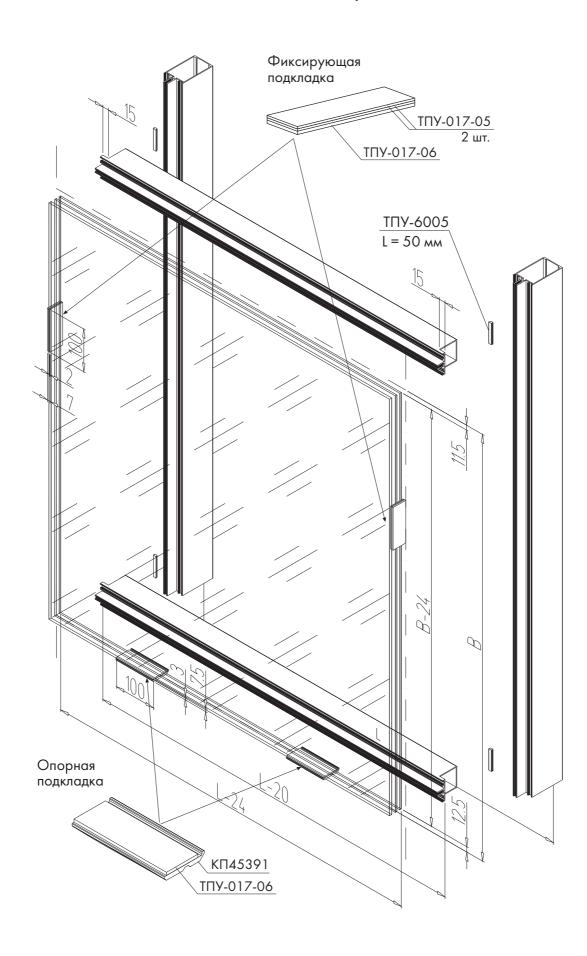

Порядок монтажа и герметизации (см. Инструкцию по монтажу светопрозрачных конструкций)

- 1. Смонтировать рамы в соответствии с монтажной схемой расположения рам по длине, выполнив при этом герметизацию стыков стоек рам.
- 2. Соединить рамы ригелями с помощью саморезов 3,5х19.
- 3. Установить в центральные пазы стоек и ригелей термовставку (цвет белый) Т50-01 или Т50-02.
- 4. Установить в пазы стоек резиновые уплотнители ТПУ-6002 (10 мм), а в пазы ригелей ТПУ-6001 (3 мм) в соответствии со схемой, аккуратно отрезав по длине ригелей и стоек между ригелями. В месте примыкания ригеля установить в стойки уплотнитель ТПУ-6005 длиной 50 мм.
- 5. Установить опорные подкладки длиной 100 мм на расстоянии 100 мм от стойки по краю каждого ригеля. Положить на алюминиевые подкладки полиэтиленовые подкладки толщиной 3 мм.
- 6. Установить на опорные подкладки стеклопакет и отцентрировать его по ширине с помощью фиксирующих подкладок толщиной 2 + 2 + 3 мм с каждой стороны стеклопакета. При установке стеклопакетов обязательно следить, чтобы триплекс был обращен внутрь крыши.
- 7. Наклеить ленту Герлен ЛТ 1,5 мм сначала вдоль стоек на поверхности стеклопакетов, с затем вдоль ригелей. Соединение ленты по длине производить внахлест не менее 20 мм.
- 8. Установить резиновые уплотнители ТПУ-007ММ (5мм) в пазы держателей КП45313-2.
- 9. С помощью винтов 5,5 (A2) прижать держатели КП45313-2 к поверхности стеклопакетов через ленту Герлен и защелкнуть крышки.

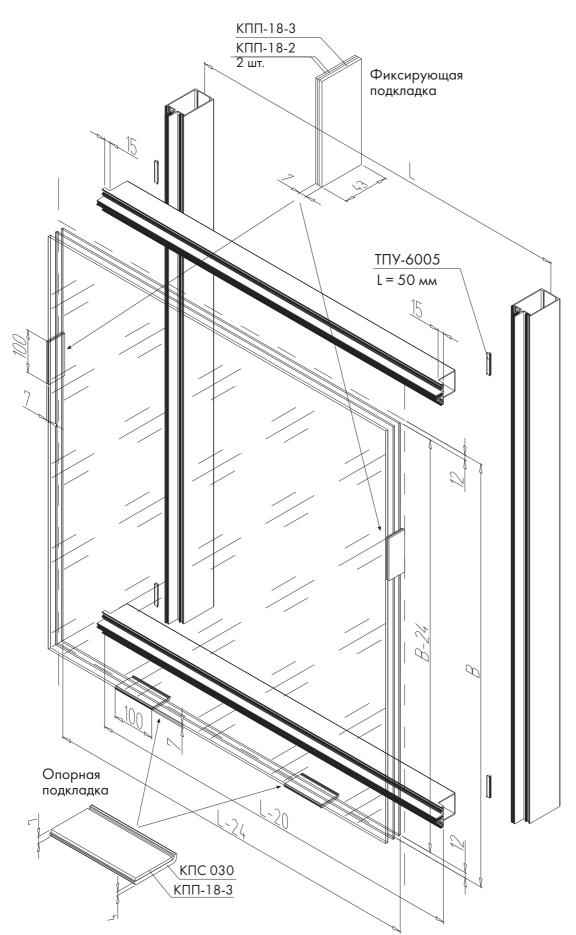
Узел сборки промежуточных ригелей с промежуточной стойкой


R

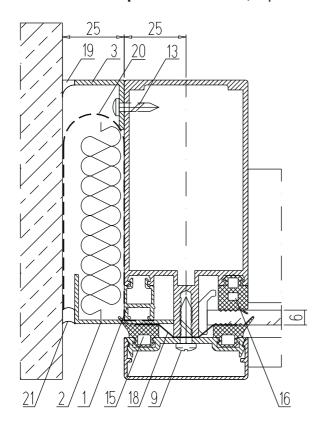
Установка стекла

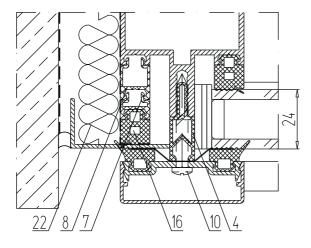


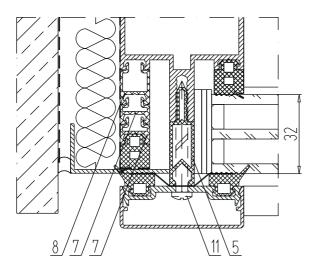
Установка стеклопакета толщиной 24 мм

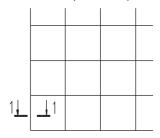


Установка стеклопакета толщиной 32 мм

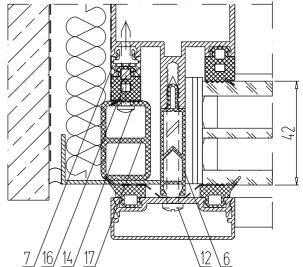


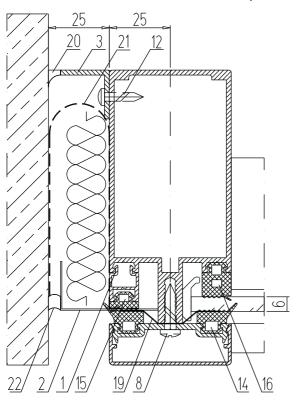

Установка стеклопакета толщиной 42 мм

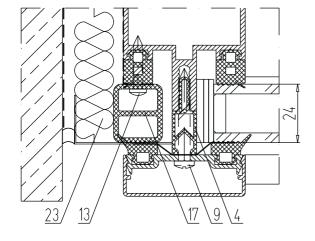


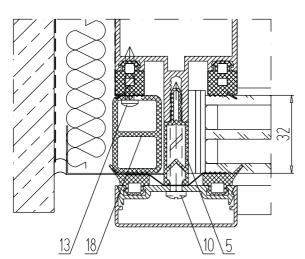

® CUCIA

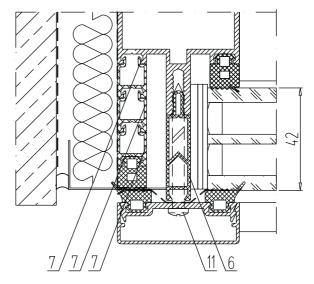
Сечения крайних стоек (вариант с нащельником из уголка S08/0038)

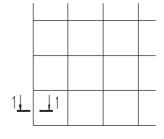


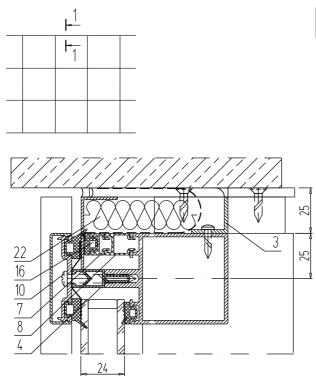

- 1. Штапик КПС 297
- 2. Уголок \$08/0038
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Термовставка 500.15.002
- 7. Штапик Т50-04
- 8. Штапик Т50-06
- 9. Винт D7981 A2 PZ 5,5x19
- 10. Винт D7981 A2 PZ 5,5x38
- 11. Винт D7981 A2 PZ 5,5х45
- 12. Винт D7981 A2 PZ 5,5x50
- 13. Винт D7981 A2 PZ 3,5x16
- 14. Винт D7981 ZN PZ 4,2x32
- 15. Уплотнитель ТПУ-007ММ
- 16. Уплотнитель ТПУ-6002
- 17. Спейсер 32
- 18. Герлен ЛТ 50х1,5
- 19. Герметик силиконовый
- 20. Бутиловая лента
- 21. Мастика тиоколовая
- 22. Монтажная пена

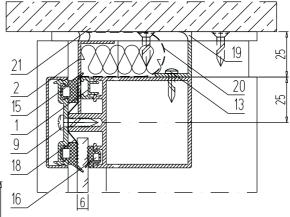


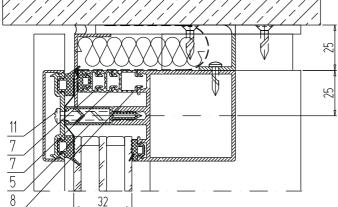

®

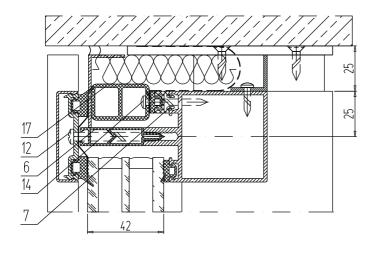

Сечения крайних стоек (вариант с нащельником из оцинкованной стали или



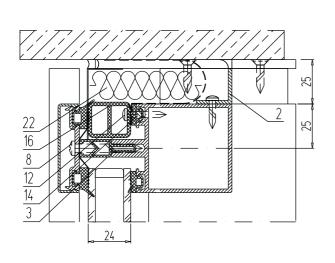


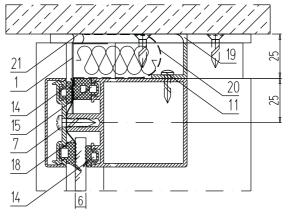


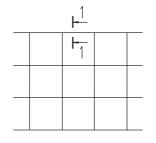


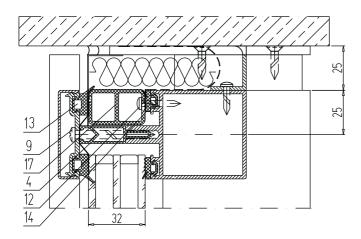

- 1. Штапик КП45339
- 2. Оцинк. сталь 0,55 мм
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Термовставка 500.15.002
- 7. Штапик Т50-06
- 8. Винт D7981 A2 PZ 5,5x19
- 9. Винт D7981 A2 PZ 5,5x38
- 10. Винт D7981 A2 PZ 5,5х45
- 11. Винт D7981 A2 PZ 5,5x50
- 12. Винт D7981 A2 PZ 3,5х16
- 13. Винт D7981 ZN PZ 4,2x32
- 14. Уплотнитель ТПУ-007ММ
- 15. Уплотнитель ТПУ-6001
- 16. Уплотнитель ТПУ-6002
- 17. Спейсер 24
- 18. Спейсер 32
- 19. Герлен ЛТ 50х1,5
- 20. Герметик силиконовый
- 21. Бутиловая лента
- 22. Мастика тиоколовая
- 23. Монтажная пена

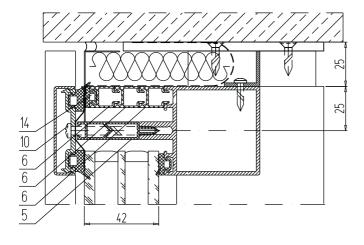
Сечения верхних ригелей (вариант с нащельником из уголка S08/0038)

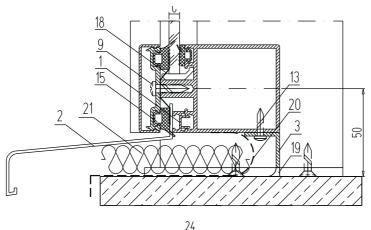


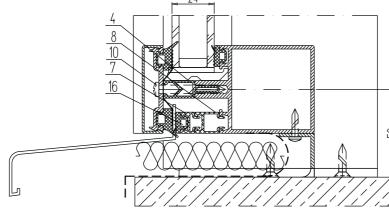


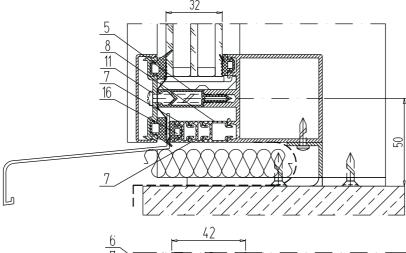

- 1. Штапик КП45396
- 2. Уголок \$08/0038
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Термовставка 500.15.002
- 7. Штапик Т50-04
- 8. Штапик Т50-06
- 9. Винт D7981 A2 PZ 5,5x19
- 10. Винт D7981 A2 PZ 5,5x38
- 11. Винт D7981 A2 PZ 5,5x45
- 12. Винт D7981 A2 PZ 5,5x50
- 13. Винт D7981 A2 PZ 3,5х16
- 14. Buht D7981 A2 PZ 4,2x32
- 15. Уплотнитель ТПУ-007ММ
- 16. Уплотнитель ТПУ-6001
- 17. Спейсер 32
- 18. Герлен ЛТ 50х1,5
- 19. Герметик силиконовый
- 20. Бутиловая лента
- 21. Мастика тилоколовая
- 22. Монтажная пена

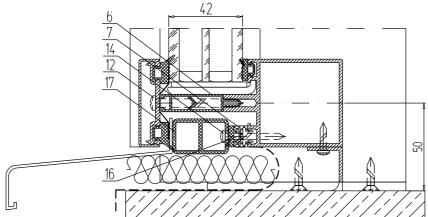



Сечения верхних ригелей (вариант с нащельником из оцинкованной стали или с крышкой КП1425)

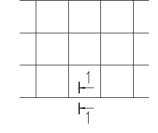


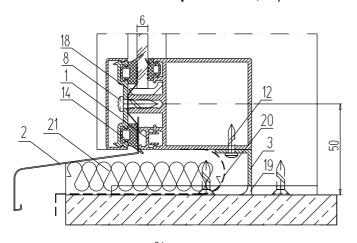


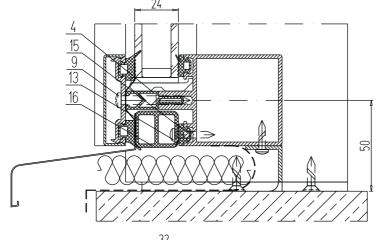

- 1. Оцинк. сталь 0,55 мм
- 2. Уголок 410039
- 3. Термовставка Т50-01
- 4. Термовставка Т50-02
- 5. Термовставка 500.15.002
- 6. Штапик Т50-06
- 7. Винт D7981 A2 PZ 5,5x19
- 8. Винт D7981 A2 PZ 5,5x38
- 9. Винт D7981 A2 PZ 5,5x45
- 10. Винт D7981 A2 PZ 5,5x50
- 11. Винт D7981 A2 PZ 3,5x16
- 12. Винт D7981 A2 PZ 4,2x32
- 13. Уплотнитель ТПУ-007ММ
- 14. Уплотнитель ТПУ-6001
- 15. Уплотнитель ТПУ-6002
- 16. Спейсер 24
- 17. Спейсер 32
- 18. Герлен ЛТ 50х1,5
- 19. Герметик силиконовый
- 20. Бутиловая лента
- 21. Мастика тилоколовая
- 22. Монтажная пена

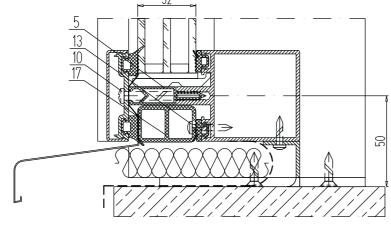


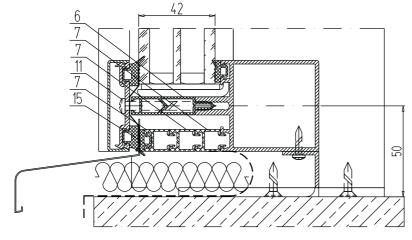
Сечения нижних ригелей (вариант со сливом КП1225)

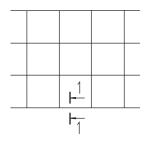


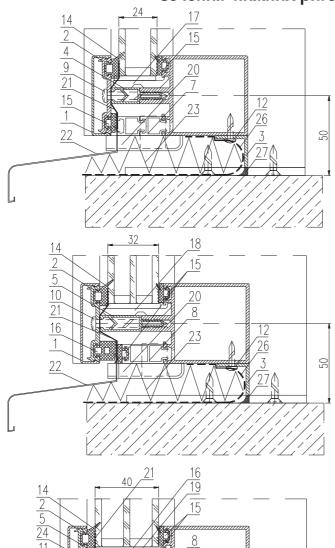


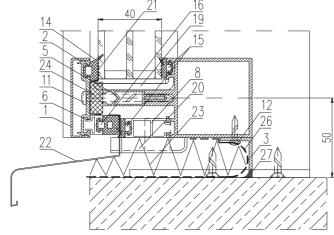


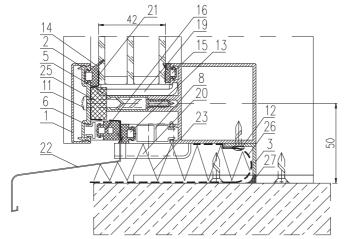

- 1. Штапик КП45396
- 2. Слив КП1225
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Термовставка 500.15.002
- 7. Штапик Т50-04
- 8. Штапик Т50-06
- 9. Винт D7981 A2 PZ 5,5x19
- 10. Винт D7981 A2 PZ 5,5x38
- 11. Винт D7981 A2 PZ 5,5x45
- 12. Винт D7981 A2 PZ 5,5x50
- 13. Винт D7981 A2 PZ 3,5x16
- 14. Buht D7981 A2 PZ 4,2x32
- 15. Уплотнитель ТПУ-007ММ
- 16. Уплотнитель ТПУ-6001
- 17. Спейсер 32
- 18. Герлен ЛТ 50х1,5
- 19. Герметик силиконовый
- 20. Лента бутиловая
- 21. Монтажная пена




Сечения нижних ригелей (вариант со сливом из оцинкованной стали)

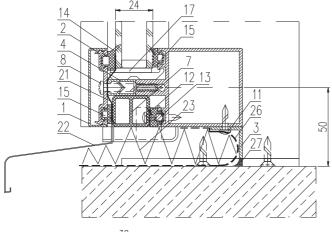


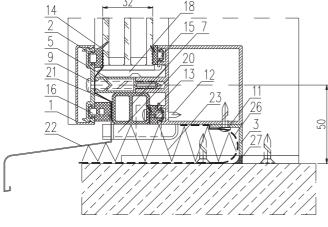

- 1. Штапик КПС 296
- 2. Оцинк. сталь 0,55 мм
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Термовставка 500.15.002
- 7. Штапик Т50-06
- 8. Винт D7981 A2 PZ 5,5x19
- 9. Винт D7981 A2 PZ 5,5x38
- 10. Винт D7981 A2 PZ 5,5х45
- 11. Винт D7981 A2 PZ 5,5x50
- 12. Винт D7981 A2 PZ 3,5x16
- 13. Винт D7981 A2 PZ 4,2х32
- 14. Уплотнитель ТПУ-007ММ
- 15. Уплотнитель ТПУ-6001
- 16. Спейсер 24
- 17. Спейсер 32
- 18. Герлен ЛТ 50х1,5
- 19. Герметик силиконовый
- 20. Лента бутиловая
- 21. Монтажная пена

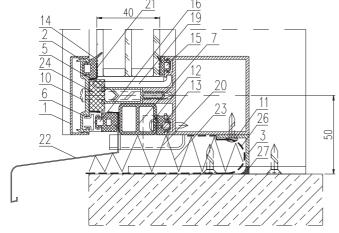


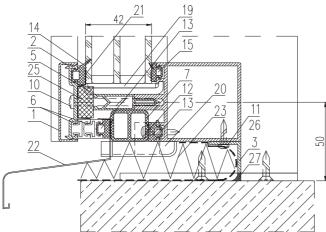
Сечения нижних ригелей с влагоотводником КПП-24

(вариант со штапиками)

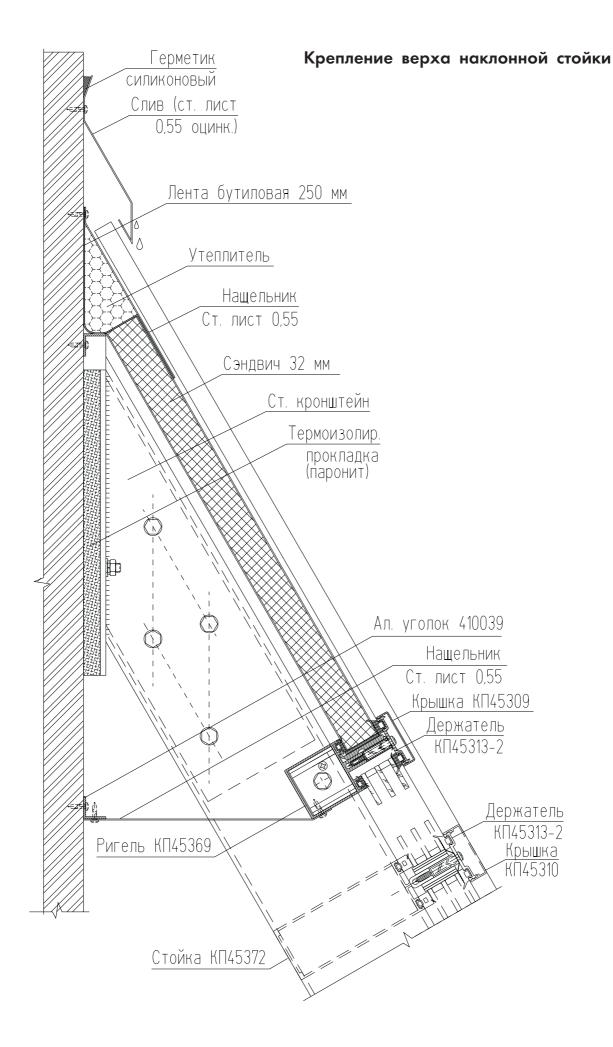


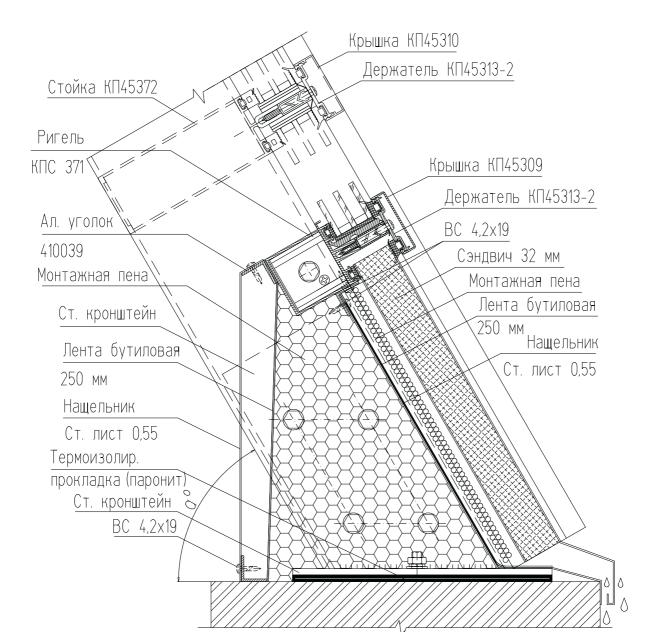

- 1. Крышка КП45309
- 2. Держатель КП45313-2
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Штапик Т50-04
- 7. Штапик Т50-06
- 8. Штапик Т50-07
- 9. Винт D7981 ZN PZ 5,5x38
- 10. Винт D7981 ZN PZ 5,5х45
- 11. Винт D7981 ZN PZ 5,5x55
- 12. Винт D7981 ZN PZ 3,5x16
- 13. Уплотнитель ТПУ-001 ММ
- 14. Уплотнитель ТПУ-007ММ
- 15. Уплотнитель ТПУ-6001
- 16.Уплотнитель ТПУ-6002
- 17. Подкладка КП45109 + ТПУ-017-04
- 18. Подкладка КП45391+ ТПУ-01*7-*06
- 19. Подкладка КПС 030 +
 - КПП-18-3
- 20. Влагоотводник КПП-24
- 21. Герлен ЛТ 50х1,5
- 22. Слив
- 23. Монтажная пена
- 24. Пенополистирол 8 х 20
- 25. Пенополистирол 10 х 20
- 26. Лента бутиловая
- 27. Герметик силиконовый

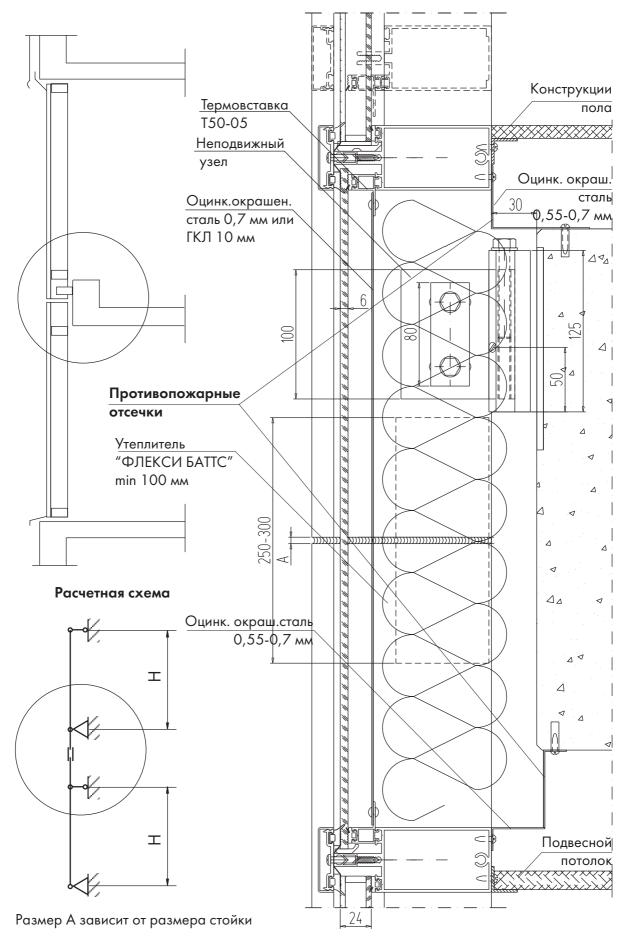


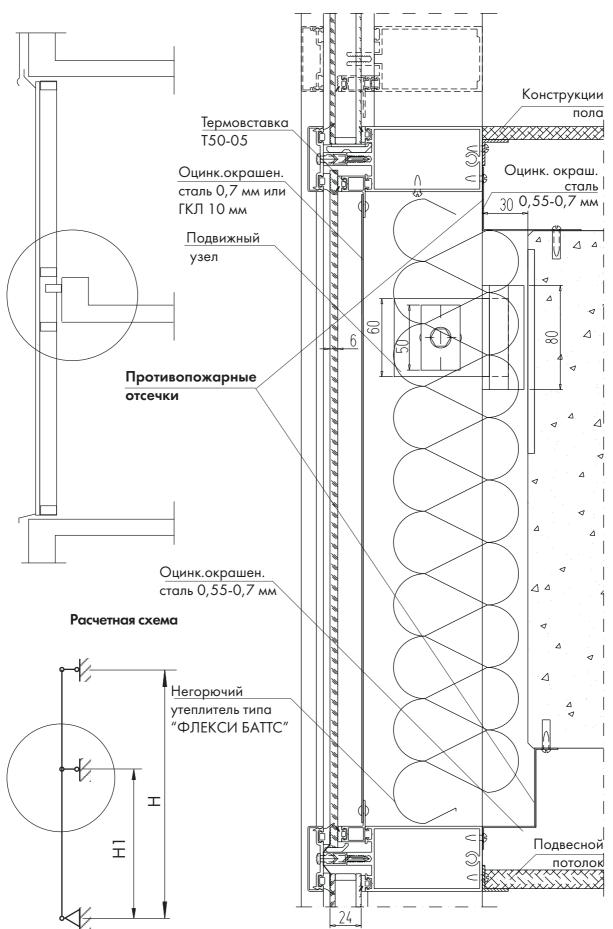

Сечения нижних ригелей с влагоотводником КПП-24

(вариант со спейсерами)

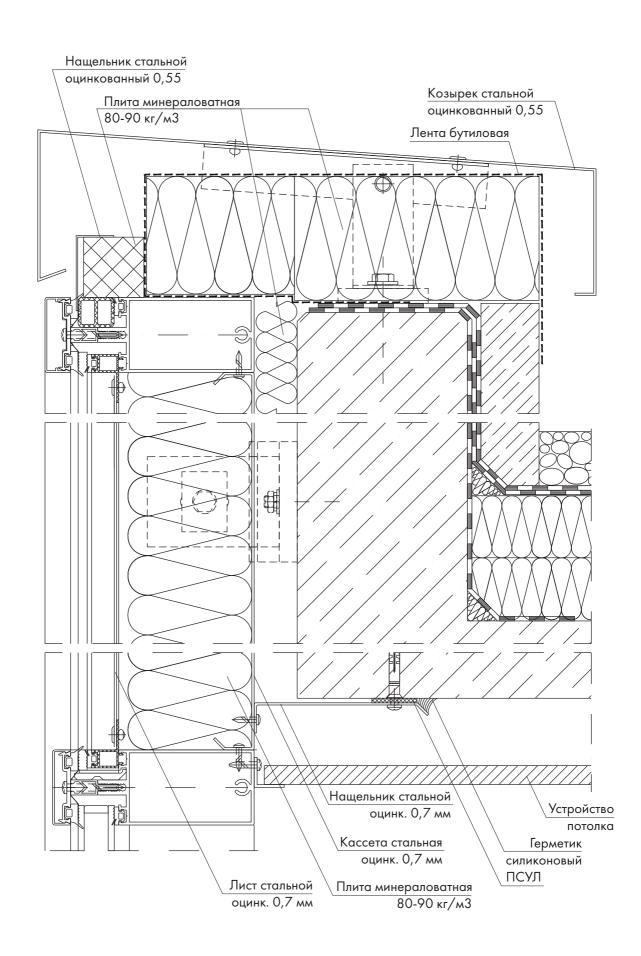


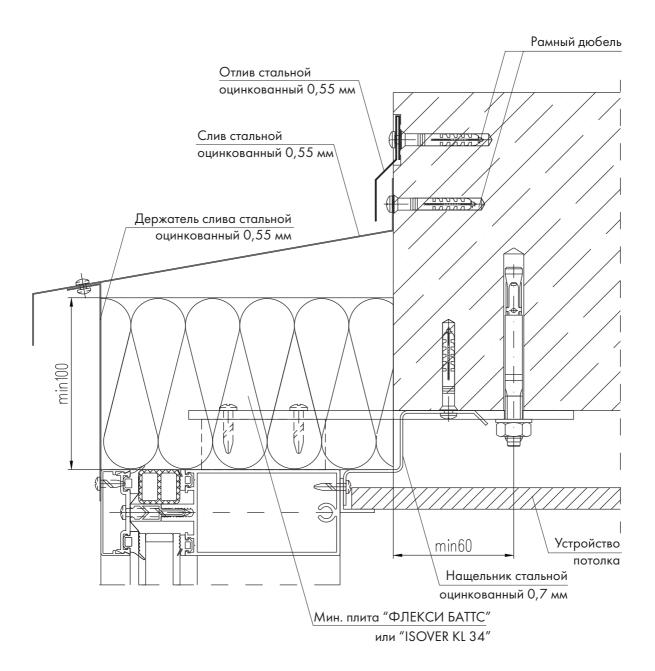

- 1. Крышка КП45309
- 2. Держатель КП45313-2
- 3. Уголок 410039
- 4. Термовставка Т50-01
- 5. Термовставка Т50-02
- 6. Штапик Т50-04
- 7. Спейсер 24
- 8. Винт D7981 ZN PZ 5,5x38
- 9. Винт D7981 ZN PZ 5,5x45
- 10. Винт D7981 ZN PZ 5,5x55
- 11. Винт D7981 ZN PZ 3,5x16
- 12. Винт D7981 ZN PZ 4,2x25
- 13. Уплотнитель ТПУ-001ММ
- 14. Уплотнитель ТПУ-007ММ
- 15. Уплотнитель ТПУ-6001
- 16. Уплотнитель ТПУ-6002
- 17. Подкладка КП45109 + ТПУ-017-04
- 18. Подкладка КП45391+ ТПУ-017-06
- 19. Подкладка КПС 030 + КПП-18-3
- 20. Влагоотводник КПП-24
- 21. Герлен ЛТ 50х1,5
- 22. Слив
- 23. Монтажная пена
- 24. Пенополистирол 8 х 20
- 25. Пенополистирол 10 х 20
- 26. Лента бутиловая
- 27. Герметик силиконовый


Крепление низа наклонной стойки

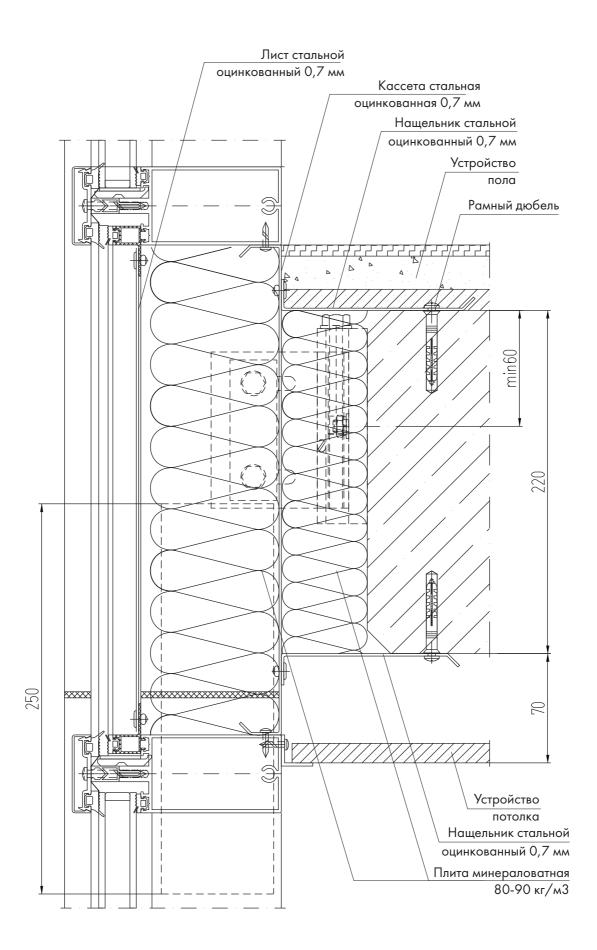


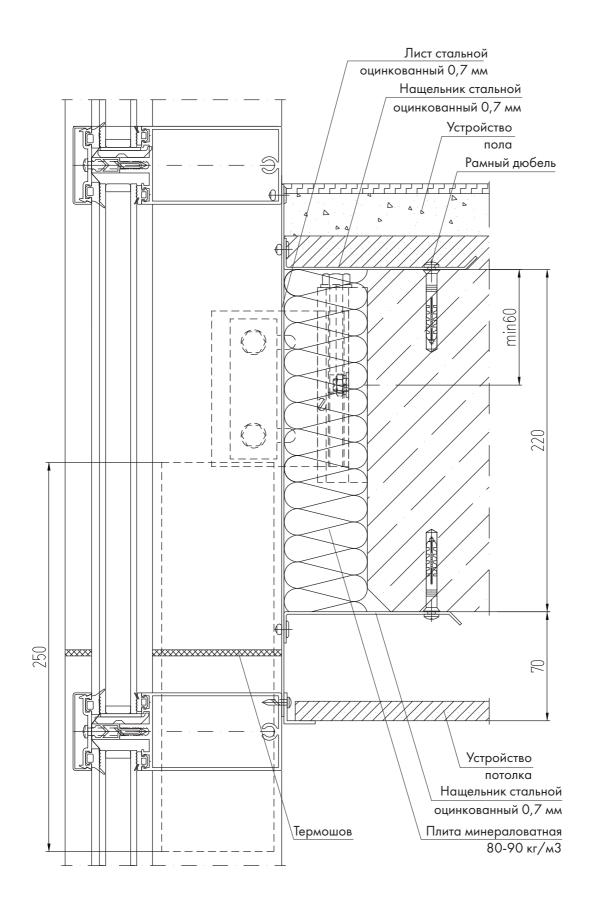
КРЕПЛЕНИЕ СТОЕК ПО ДВУХОПОРНОЙ СХЕМЕ



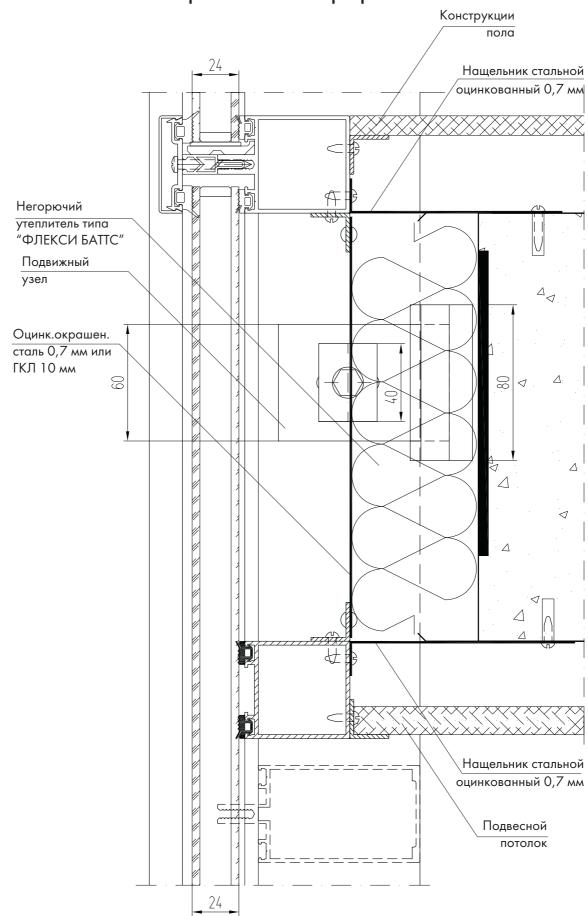

КРЕПЛЕНИЕ СТОЕК ПО ТРЕХОПОРНОЙ СХЕМЕ

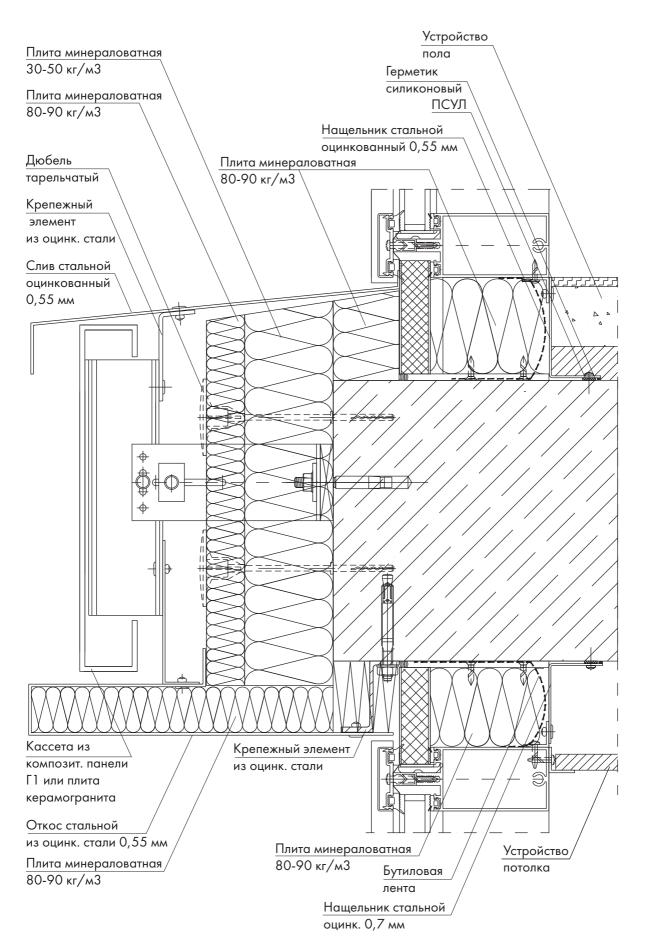
Примыкание витража КП50К к парапету, плоской крыше


Примыкание витража КП50К к парапету

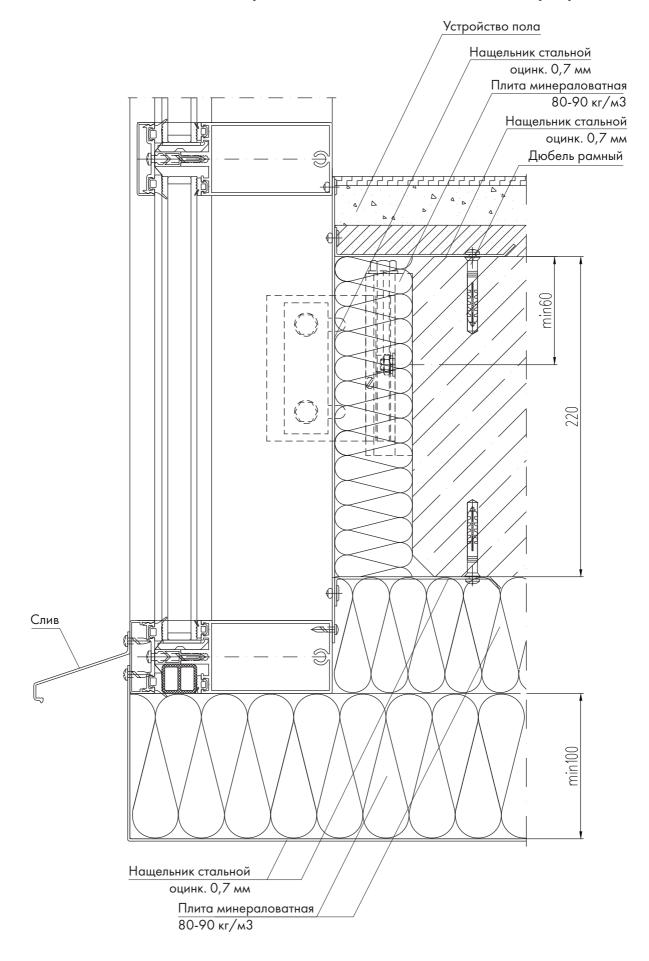

Примечание: конструкции противопожарных отсечек в районе междуэтажных перекрытий см. соответствующий "Альбом технических решений", прошедший экспертизу ЦНИИСК им. В.А. Кучеренко

Примыкание навесного витража КП50К к плите перекрытия

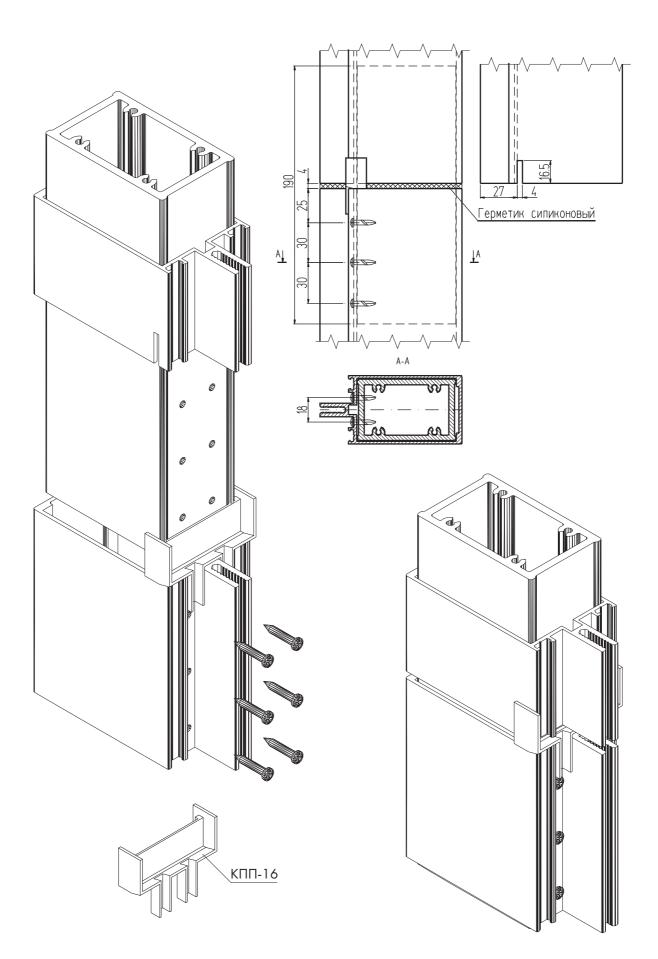

Примыкание навесного витража КП50К к плите перекрытия



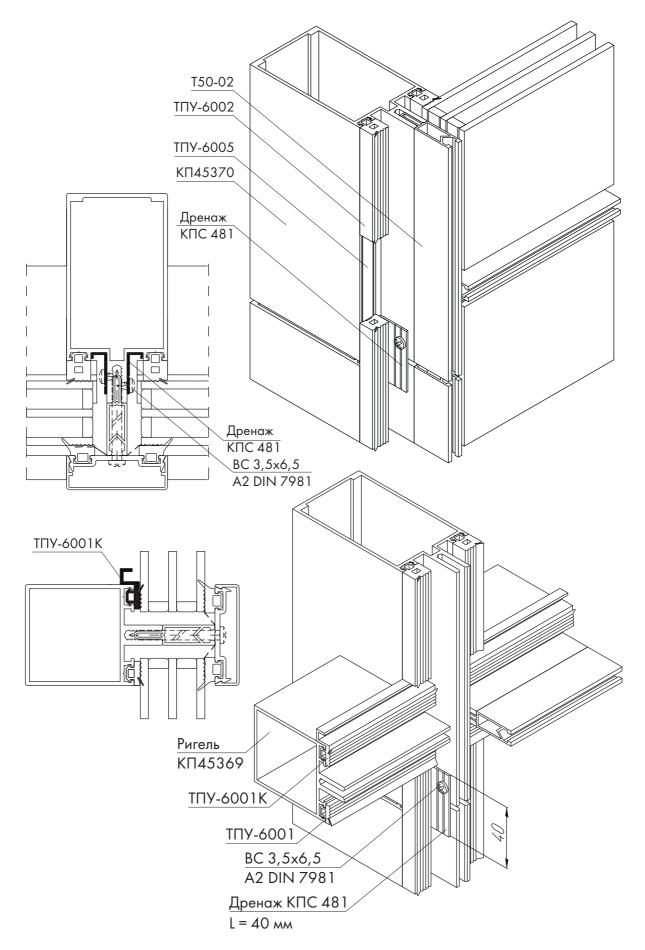
Использование фальшригеля для исполнения примыкания витража к плите перекрытия



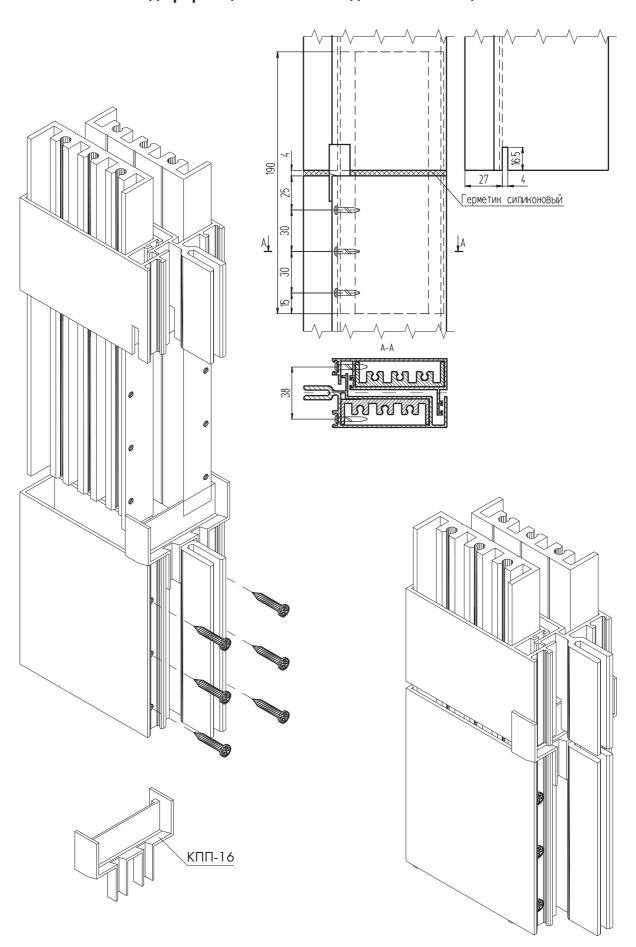
Установка витража КП50К в проем с облицовкой плит перекрытия



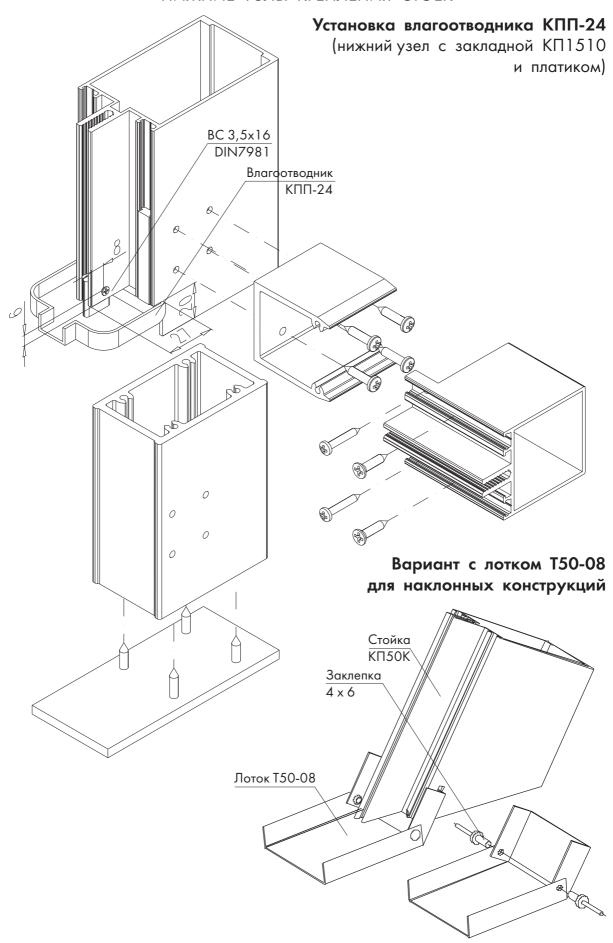
Утепление навесного витража КП50К и нижней плиты перекрытия



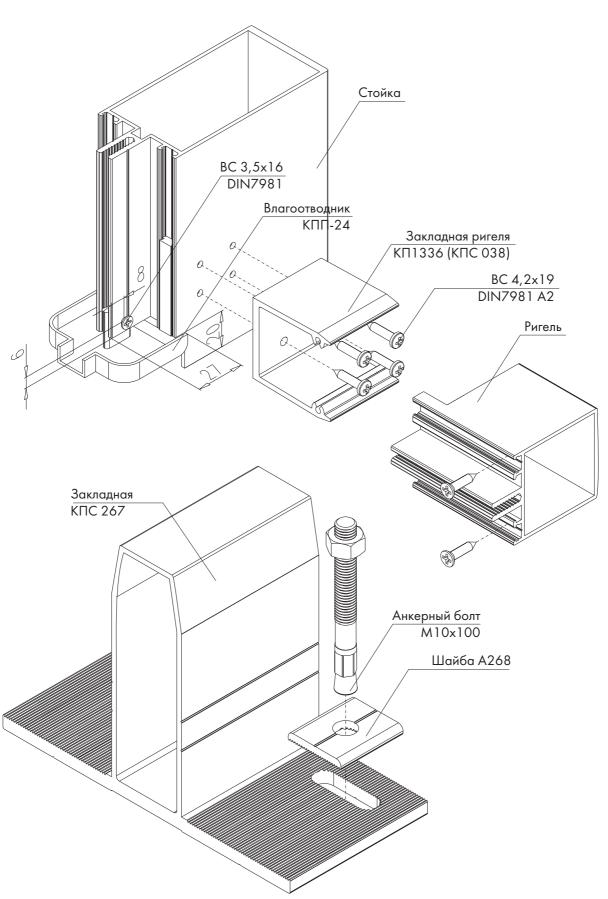
Выполнение деформационного шва с дренажной вставкой КПП-16



Выполнение деформационного шва с дренажом КПС 481



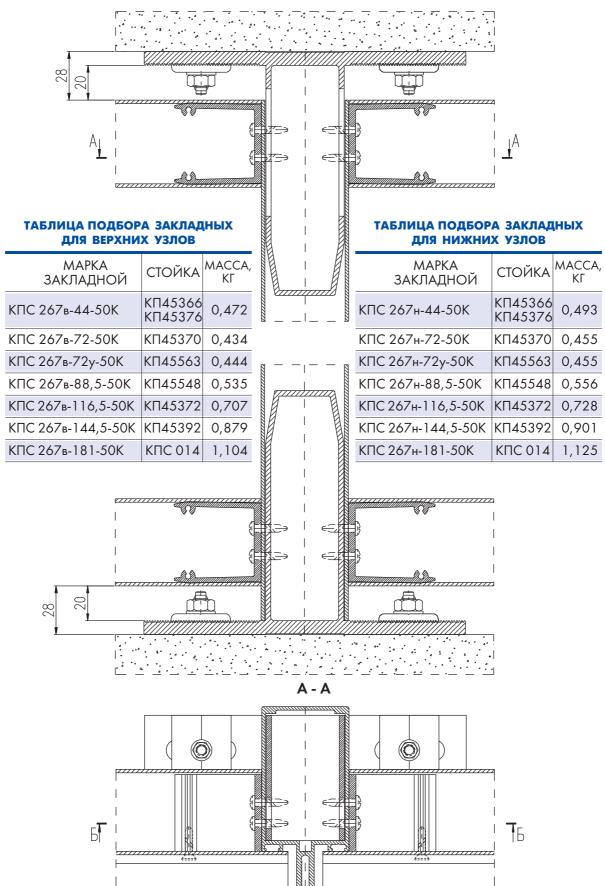
Выполнение деформационного шва для компенсационной стойки



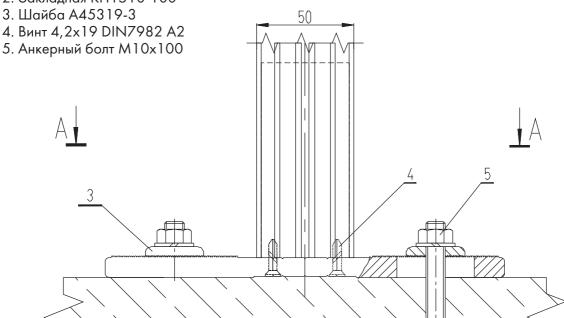
НИЖНИЕ УЗЛЫ КРЕПЛЕНИЯ СТОЕК

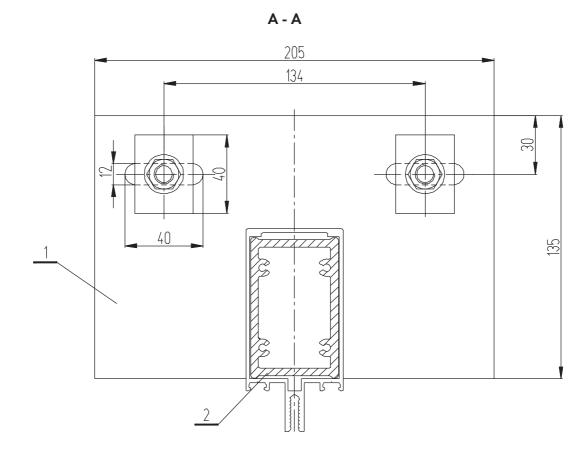
Установка влагоотводника КПП-24

(нижний узел с универсальной закладной КПС 267)

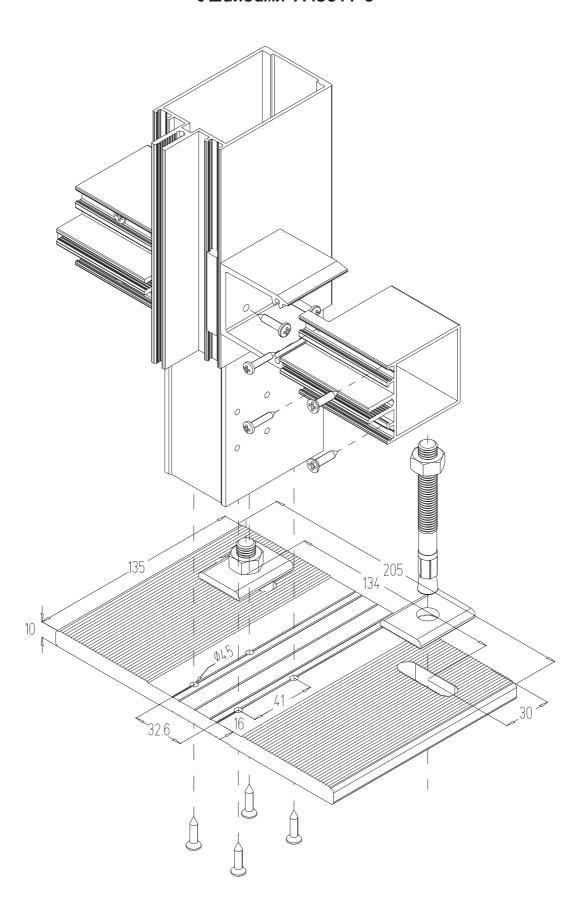


Верхний и нижний узлы крепления стойки с помощью универсальной закладной КПС 267

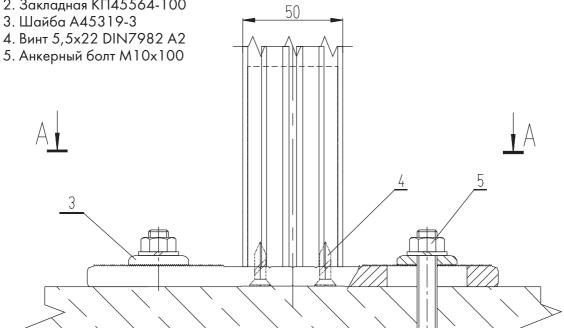




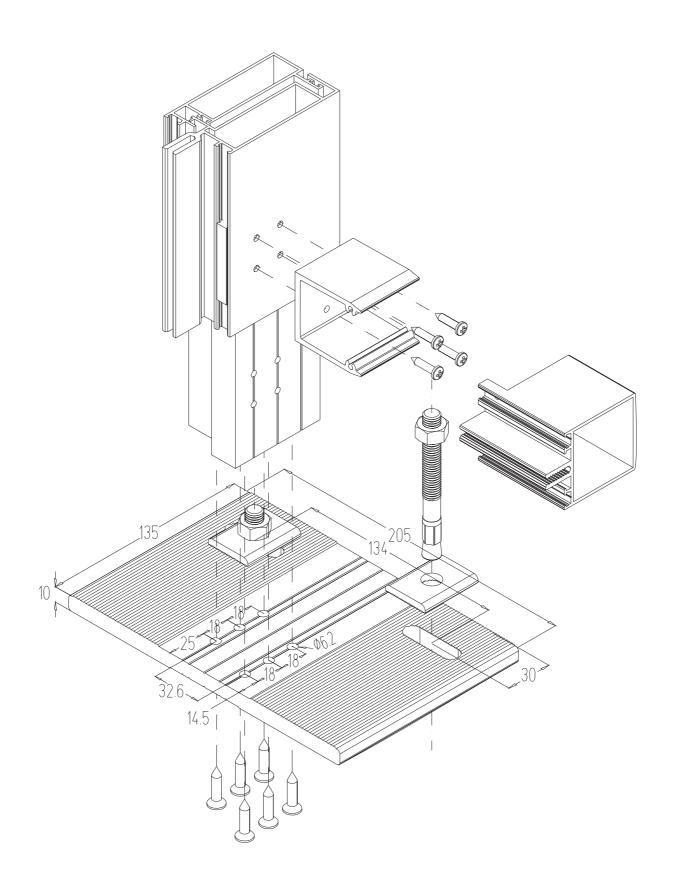
Нижний узел крепления стойки анкером КП45568-135-1 с шайбами А45319-3


Комплектация:

- 1. Анкер КП45568-135-1
- 2. Закладная КП1510-100

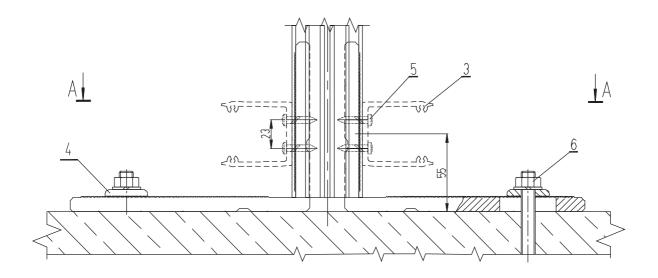

Нижний узел крепления стойки анкером КП45568-135-1 с шайбами A45319-3

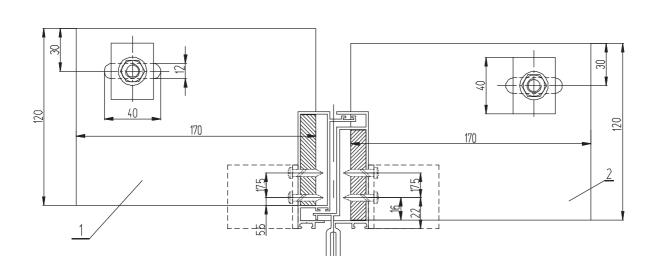
Нижний узел крепления компенсационной стойки анкером КП45568-135-3 с шайбами А45319-3


Комплектация:

A - **A** 205 134 40 -2-51

Нижний узел крепления компенсационной стойки анкером КП45568-135-3 с шайбами А45319-3

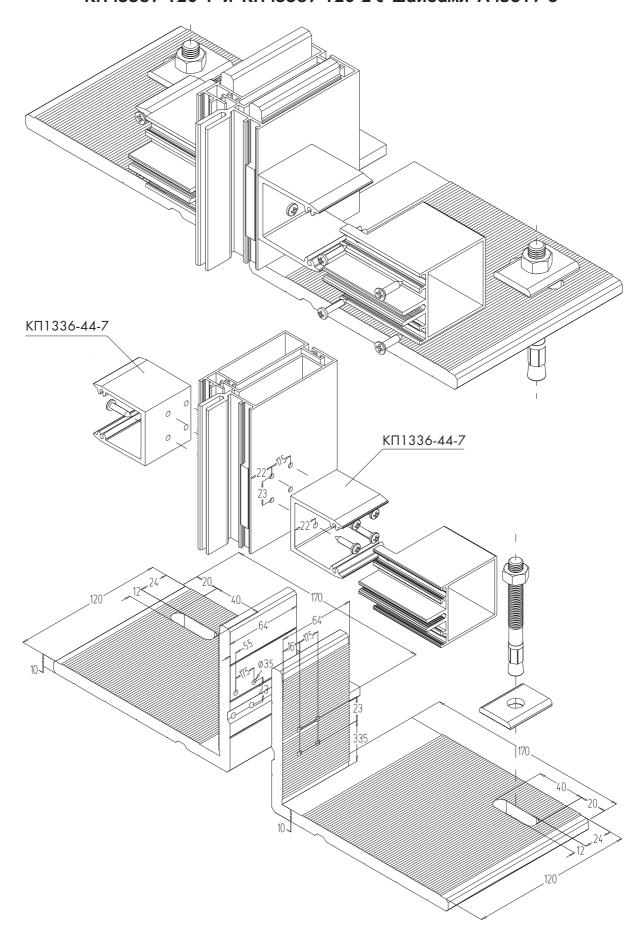


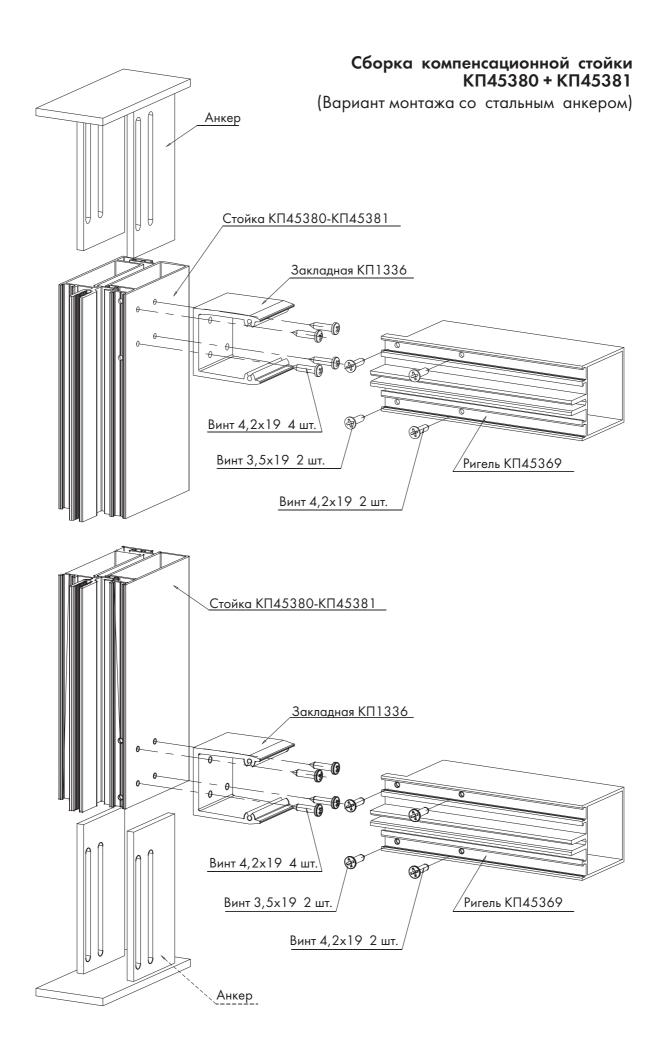

Нижний узел крепления стойки анкерами КП45569-120-1 и КП45569-120-2 с шайбами А45319-3

(ригели условно не показаны)

Комплектация:

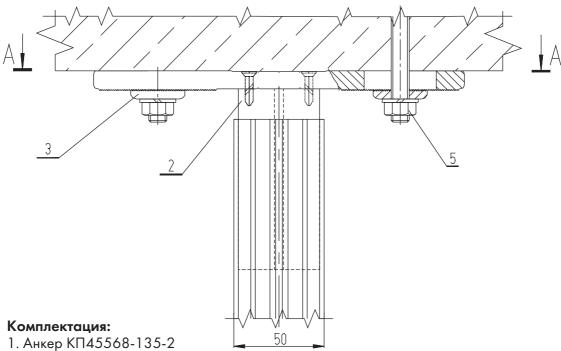
- 1. Анкер КП45569-120-1
- 2. Анкер КП45569-120-2
- 3. Закладная KП1336
- 4. Шайба А45319-3
- 5. Винт 4,2x19 DIN7981 A2
- 6. Анкерный болт M10x100

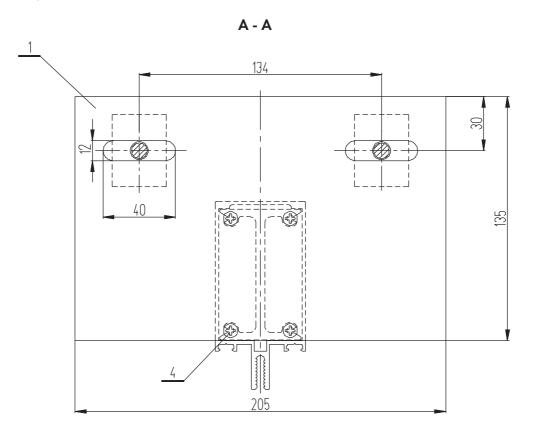



A - **A**

R R

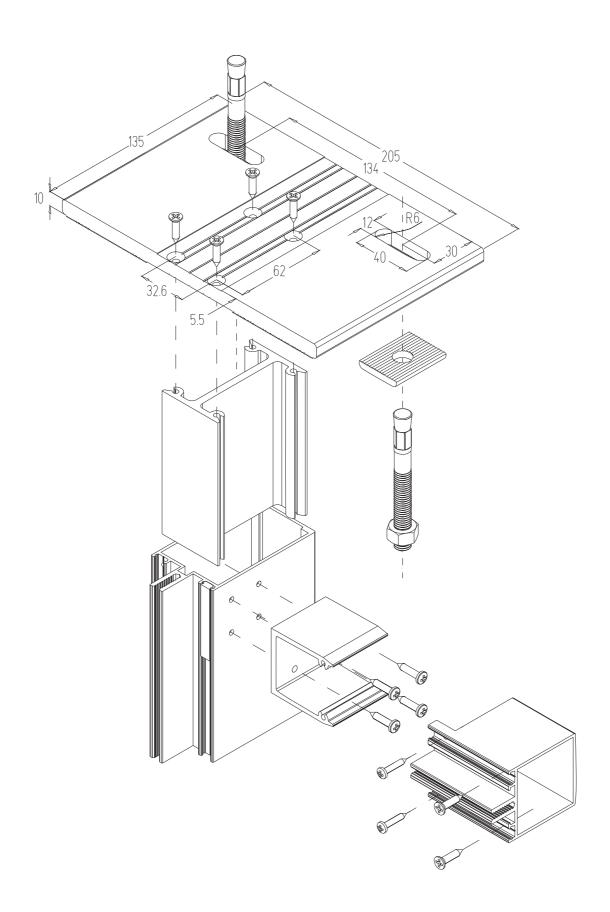
Нижний узел крепления стойки анкерами КП45569-120-1 и КП45569-120-2 с шайбами А45319-3



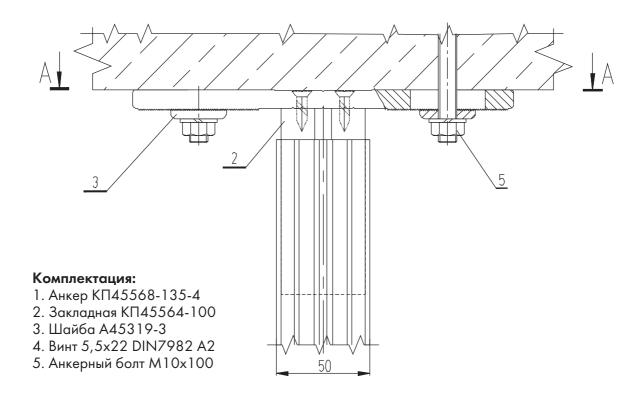


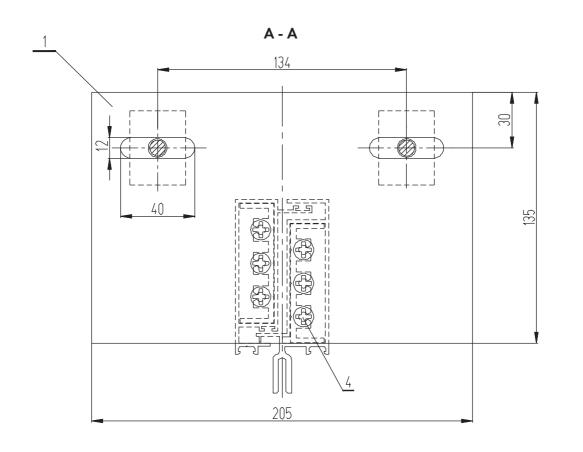
ВЕРХНИЕ УЗЛЫ КРЕПЛЕНИЯ СТОЕК

Верхний узел крепления стойки анкером КП45568-135-2 с шайбами А45319-3



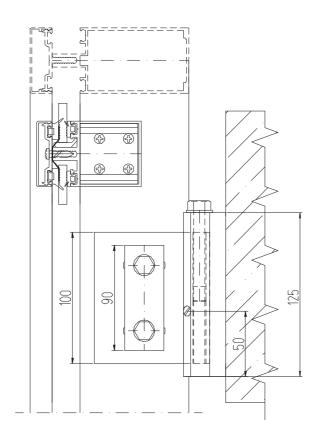
- 2. Закладная КП45491-100
- 3. Шайба А45319-3
- 4. Винт 4,2x19 DIN7982 A2
- 5. Анкерный болт М10х100

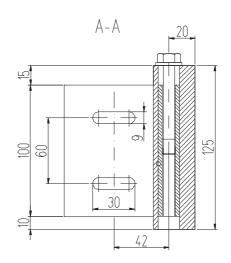


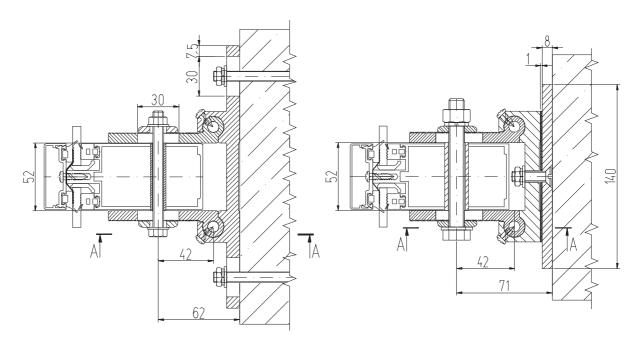

®

Верхний узел крепления стойки анкером КП45568-135-2 с шайбами А45319-3

Верхний узел крепления компенсационной стойки анкером КП45568-135-4 с шайбами А45319-3

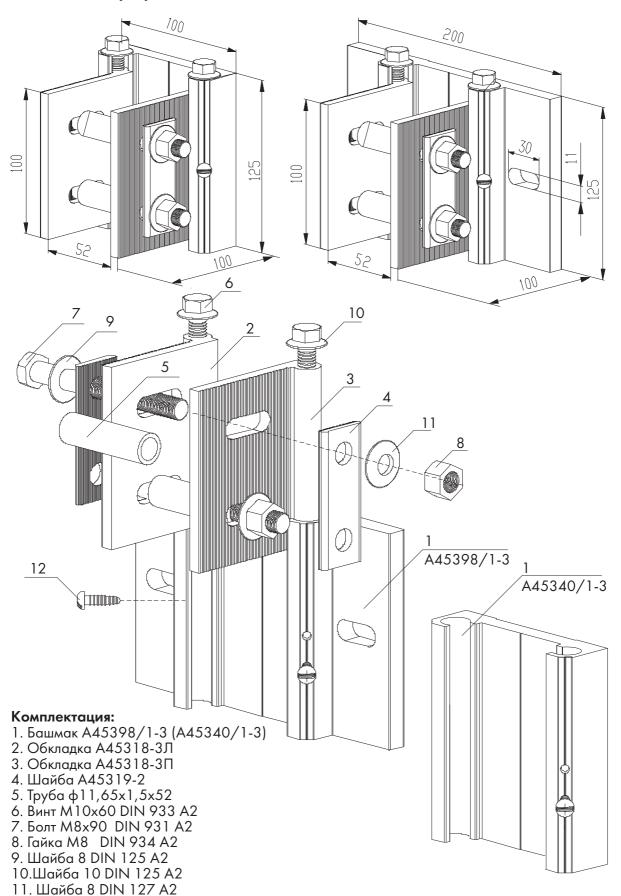

®


Верхний узел крепления компенсационной стойки анкером КП45568-135-4 с шайбами А45319-3

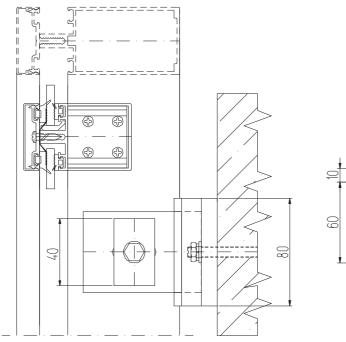


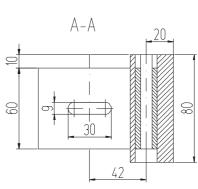
КРЕПЛЕНИЕ С ПОМОЩЬЮ АЛЮМИНИЕВЫХ АНКЕРОВ

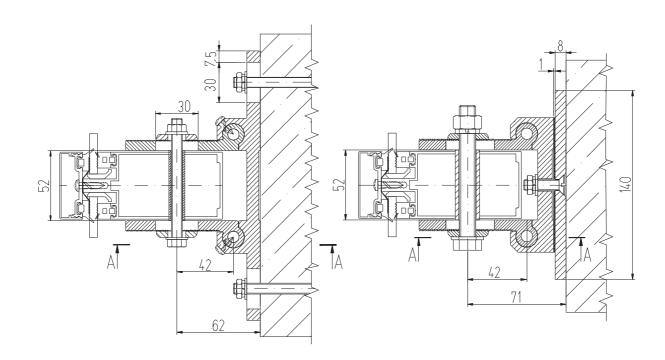
Неподвижное крепление стойки анкерами из профилей КП45398, КП45340, КП45318 и КП45319



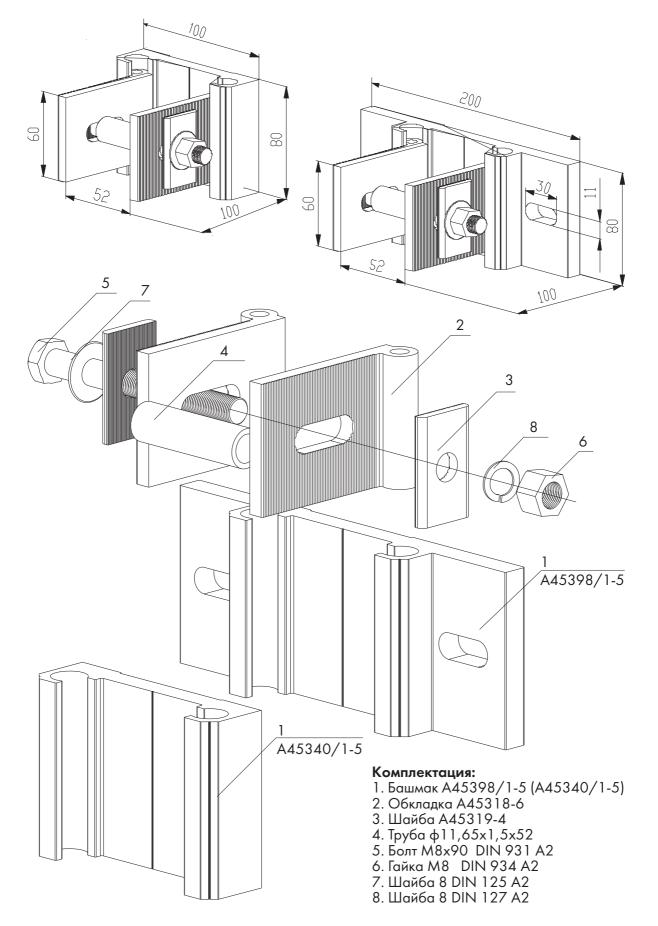
® ®

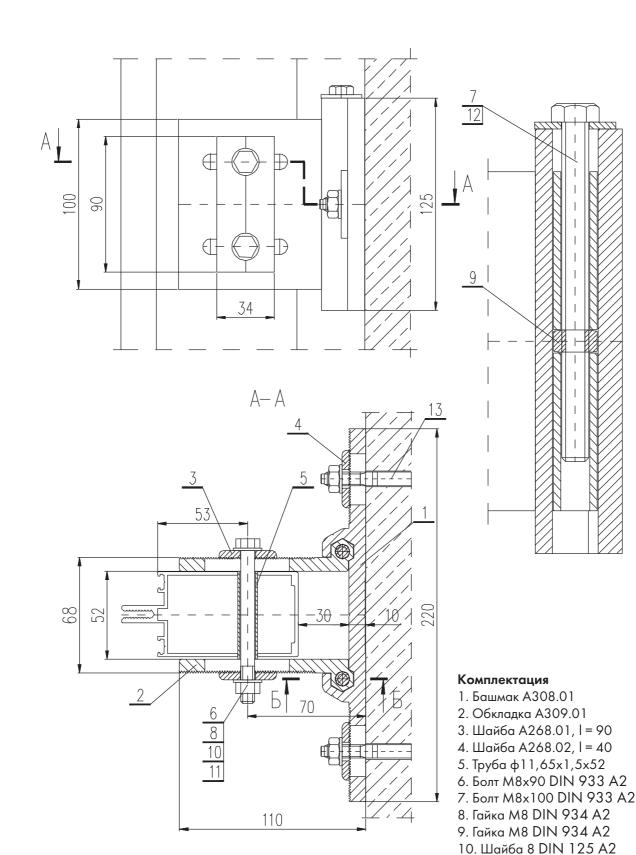

Неподвижное крепление стойки анкером АН-398 (АН-340) из профилей КП45398 (КП45340), КП45318 и КП45319



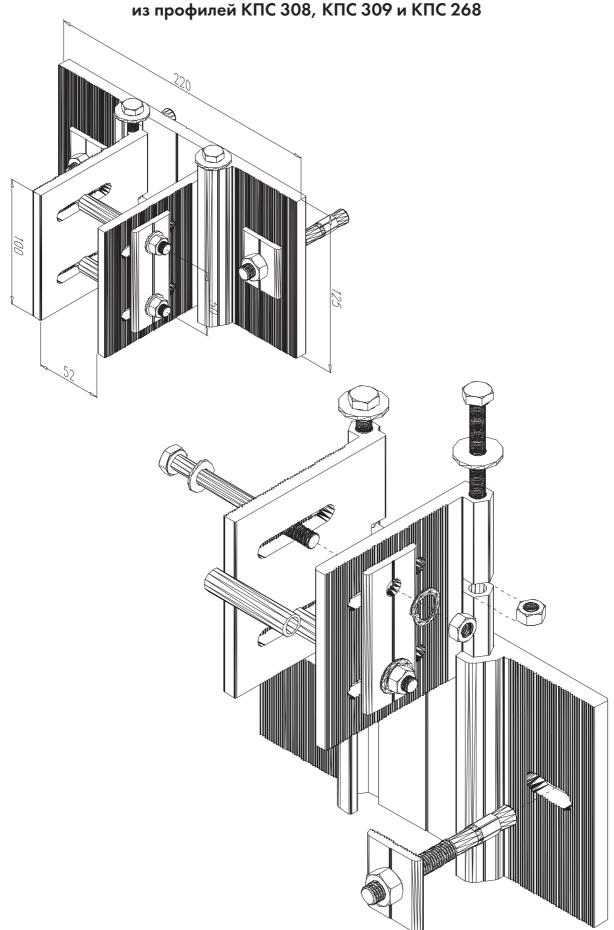

12. Винт 4,8x13 DIN 7981 A2

®

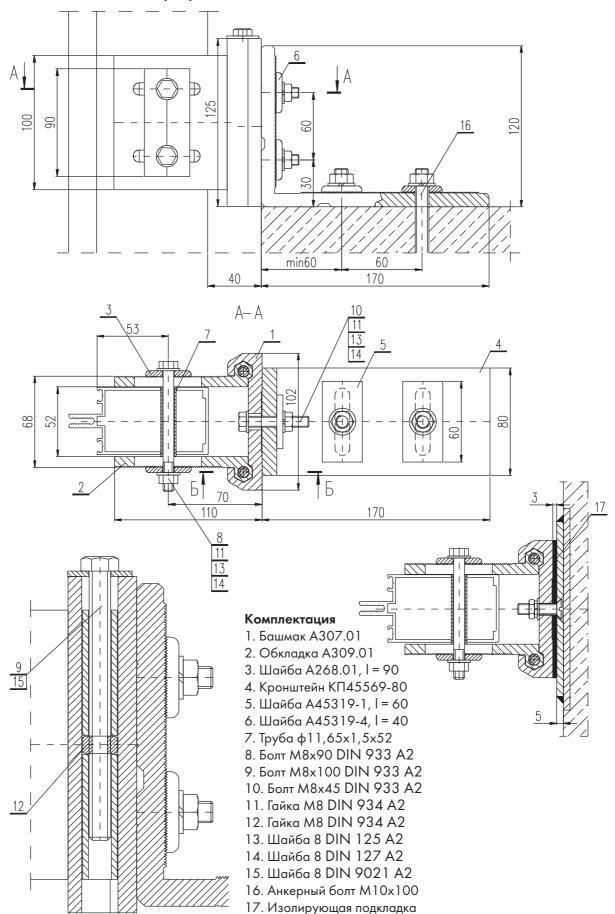

Подвижное крепление стойки анкерами из профилей КП45398, КП45340, КП45318 и КП45319



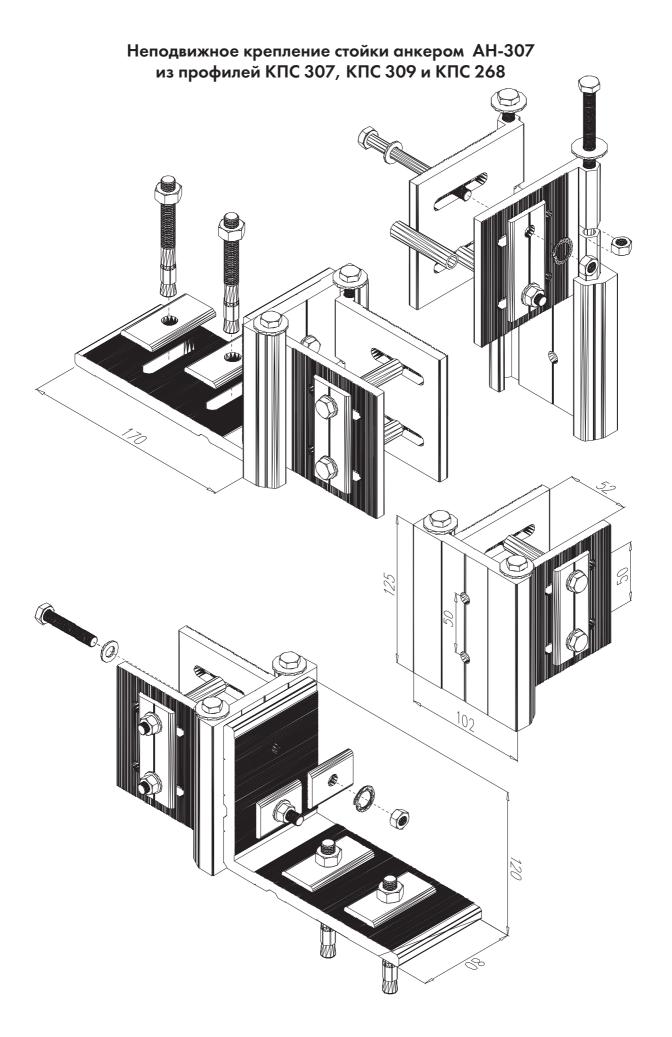
Подвижное крепление стойки анкером АП-398 (АП-340) из профилей КП45398 (КП45340), КП45318 и КП45319

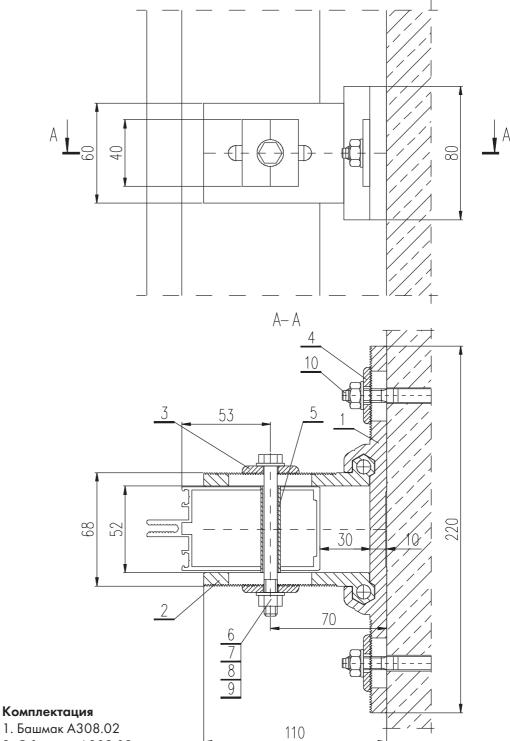

Неподвижное крепление стойки анкером АН-308 из профилей КПС 308, КПС 309 и КПС 268

11. Шайба 8 DIN 127 A2 12. Шайба 8 DIN 9021 A2 13. Анкерный болт М10х100

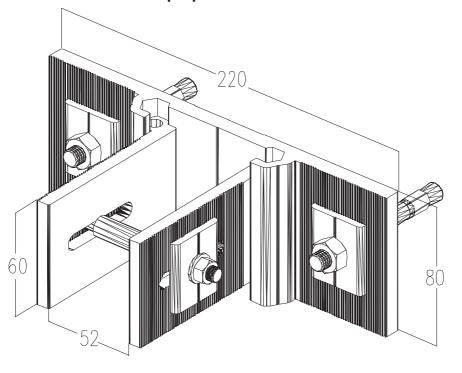


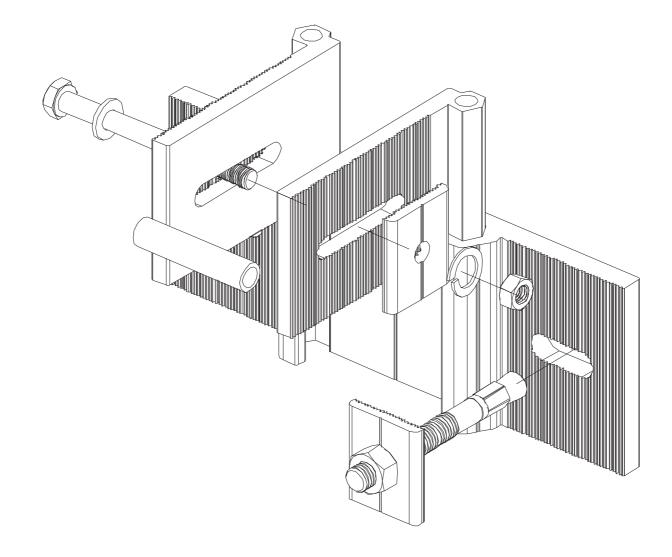
Неподвижное крепление стойки анкером АН-308 из профилей КПС 308, КПС 309 и КПС 268



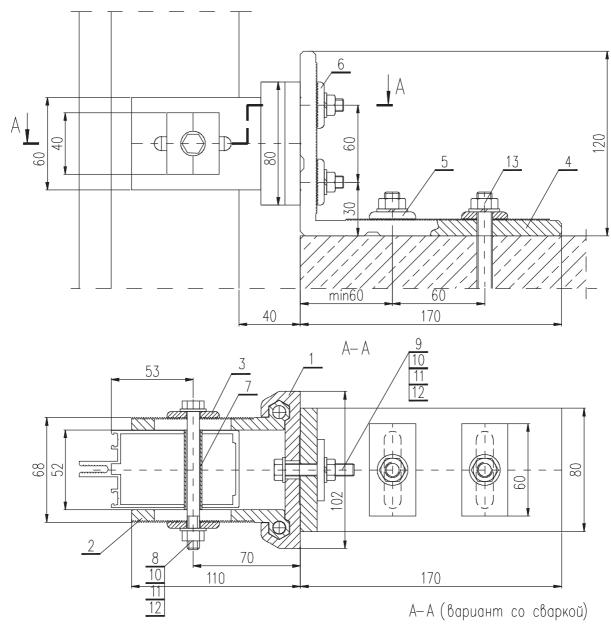

Неподвижное крепление стойки анкером АН-307 из профилей КПС 307, КПС 309 и КПС 268

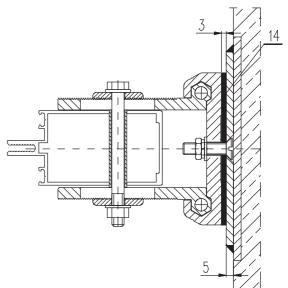
Подвижное крепление стойки анкером АП-308 из профилей КПС 308, КПС 309 и КПС 268



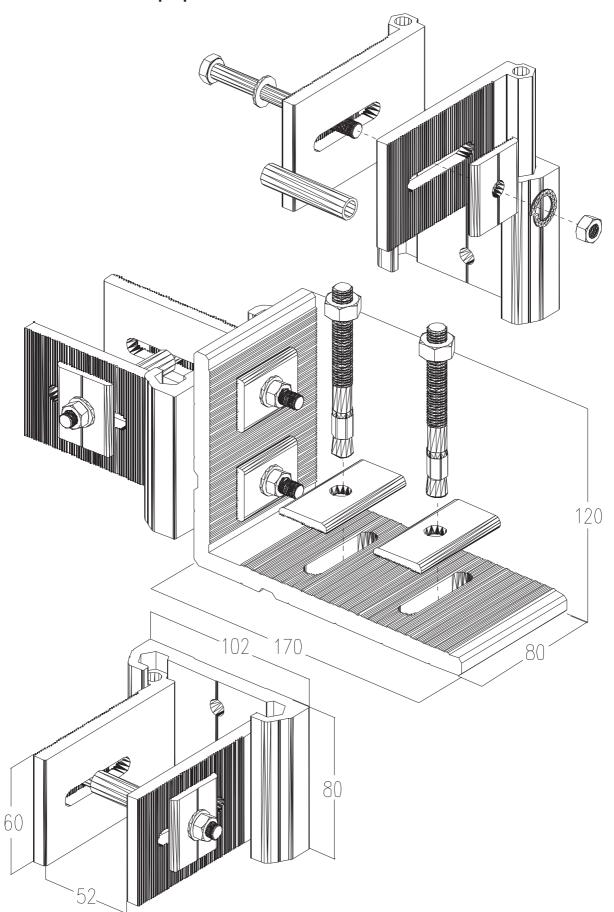


- 1. Башмак А308.02
- 2. Обкладка А309.02
- 3. Шайба А268.03, I = 40
- 4. Шайба A268.02, I = 40
- 5. Τρуба φ11,65x1,5x52
- 6. Болт M8x90 DIN 933 A2
- 7. Гайка M8 DIN 934 A2
- 8. Шайба 8 DIN 125 A2
- 9. Шайба 8 DIN 127 A2
- 10. Анкерный болт М10х100

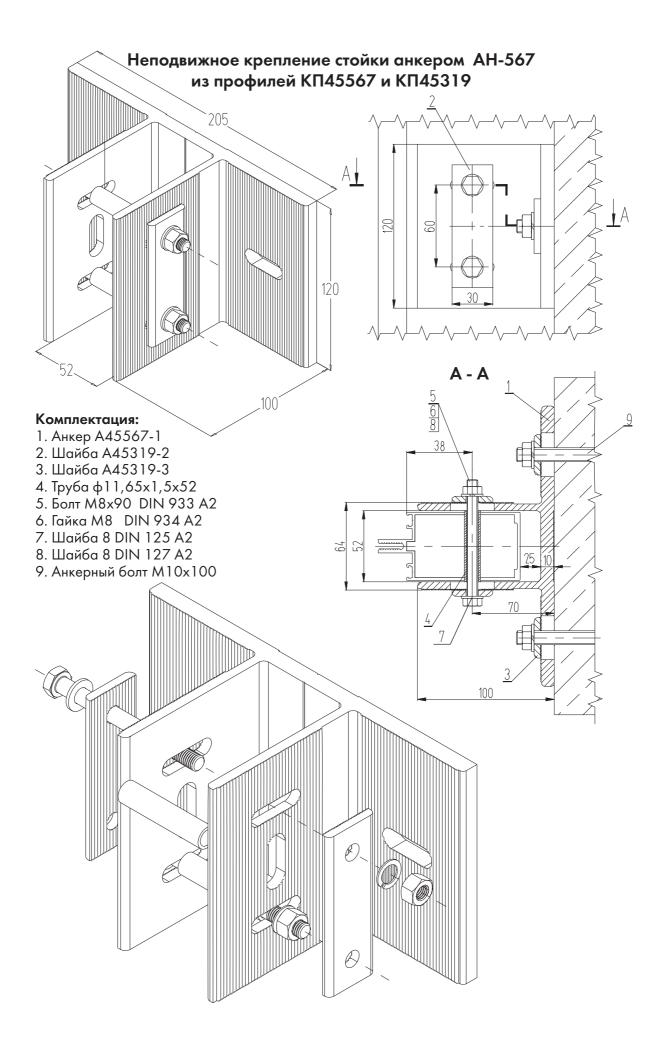

Подвижное крепление стойки анкером АП-308 из профилей КПС 308, КПС 309 и КПС 268

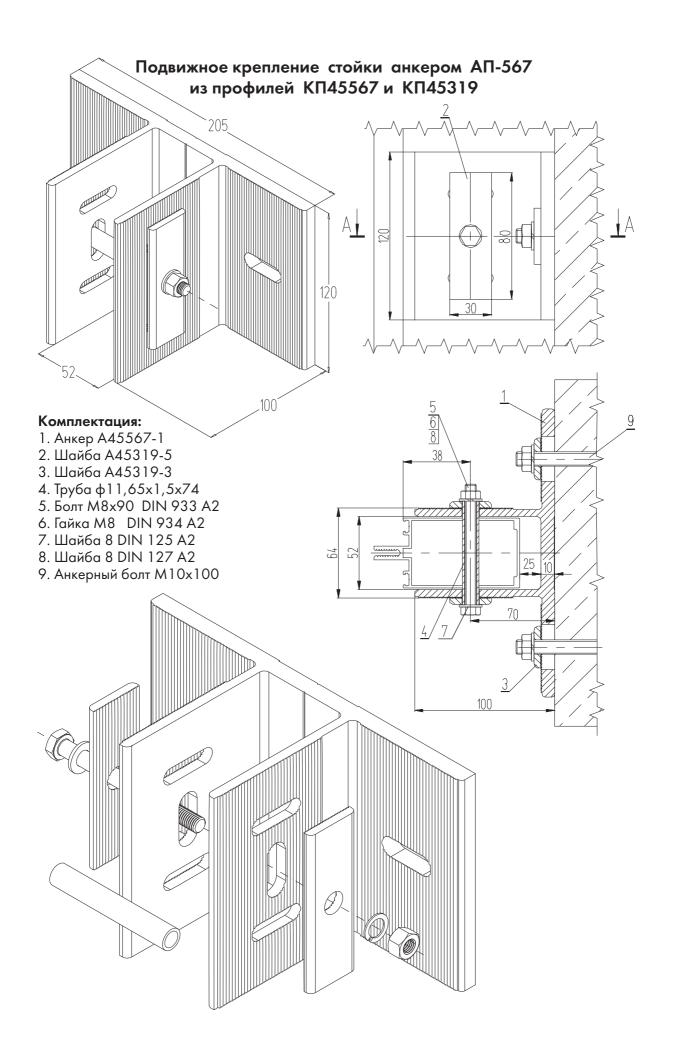


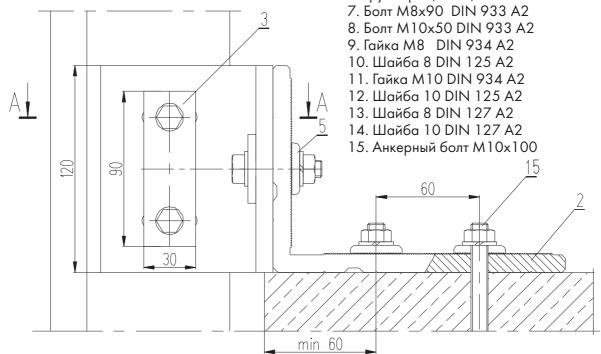
Подвижное крепление стойки анкером АП-307 из профилей КПС 307, КПС 309 и КПС 268

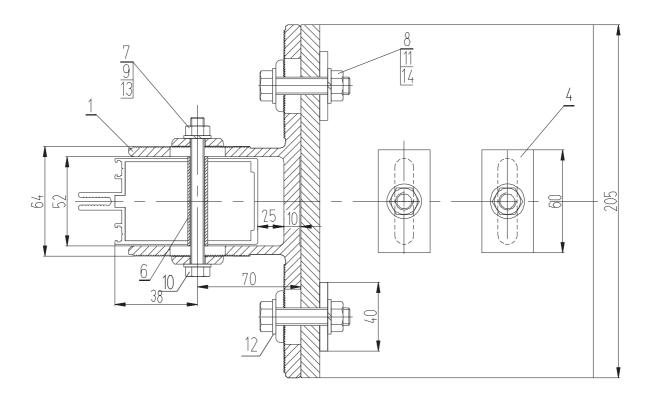

Комплектация

- 1. Башмак А307.02
- 2. Обкладка А309.02
- 3. Шайба А268.03, I = 40
- 4. Кронштейн КП45569-80
- 5. Шайба A45319-1, I = 60
- 6. Шайба A45319-4, I = 40
- 7. Труба ф11,65x1,5x52
- 8. Болт M8x90 DIN 933 A2
- 9. Болт M8x45 DIN 933 A2
- 10. Гайка M8 DIN 934 A2
- 11. Шайба 8 DIN 125 A2
- 12. Шайба 8 DIN 127 A2
- 13. Анкерный болт М10х100
- . 14. Изолирующая подкладка



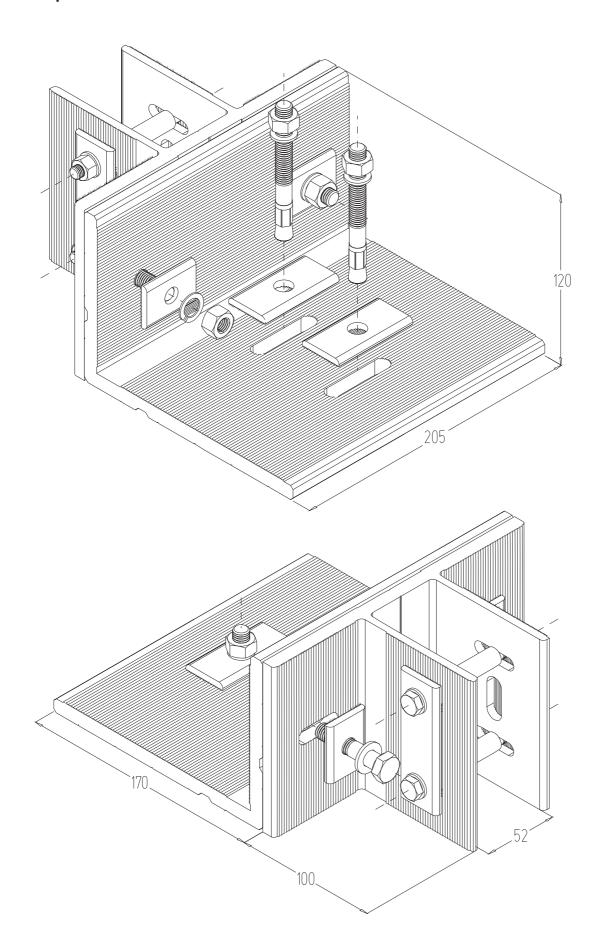

Подвижное крепление стойки анкером АП-307 из профилей КПС 307, КПС 309 и КПС 268




Неподвижное крепление стойки анкером АН-567 с кронштейном КП45569-205 и шайбами А45319-1 и А45319-3

Комплектация: 1. Анкер А45567-1

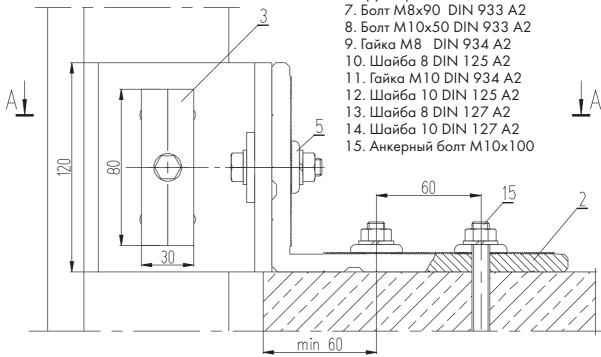
- 2. Кронштейн КП45569-205
- 3. Шайба А45319-2
- 4. Шайба А45319-1
- 5. Шайба А45319-3
- 6. Τρуба φ11,65x1,5x52

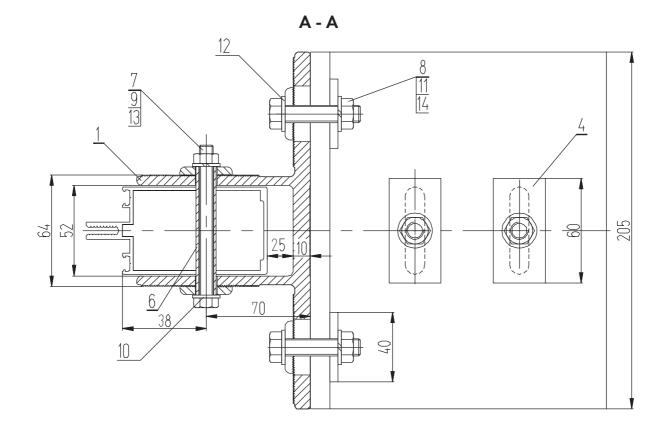


A - **A**

®

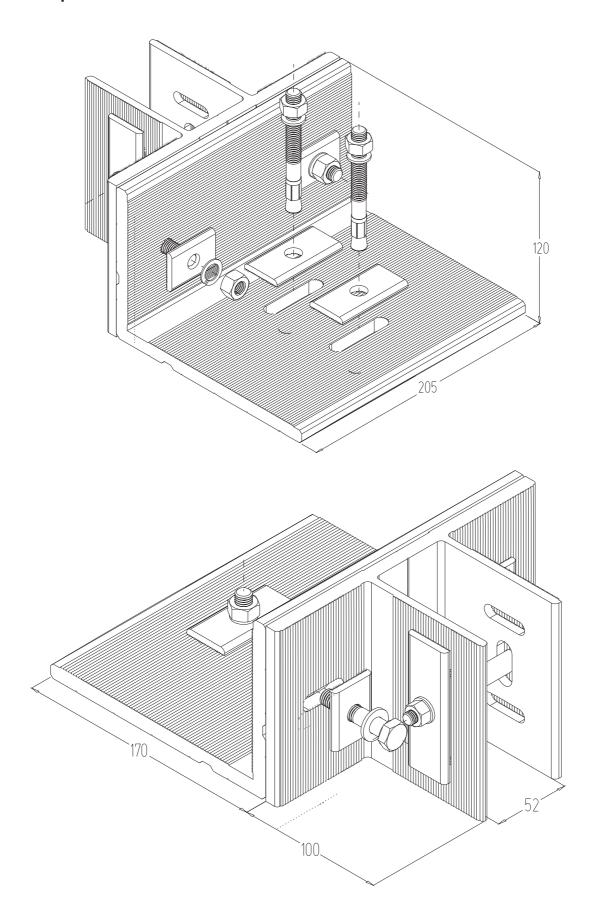
Неподвижное крепление стойки анкером АН-567 с кронштейном КП45569-205 и шайбами А45319-1 и А45319-3

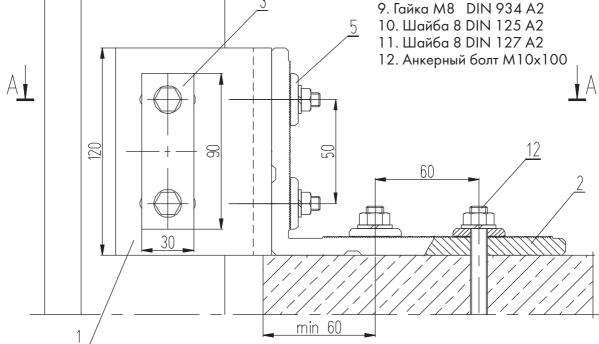


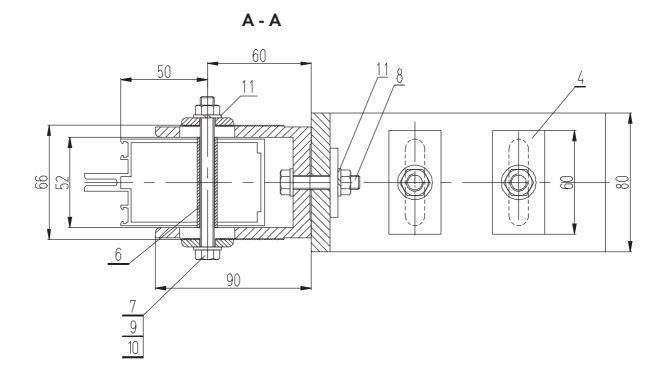


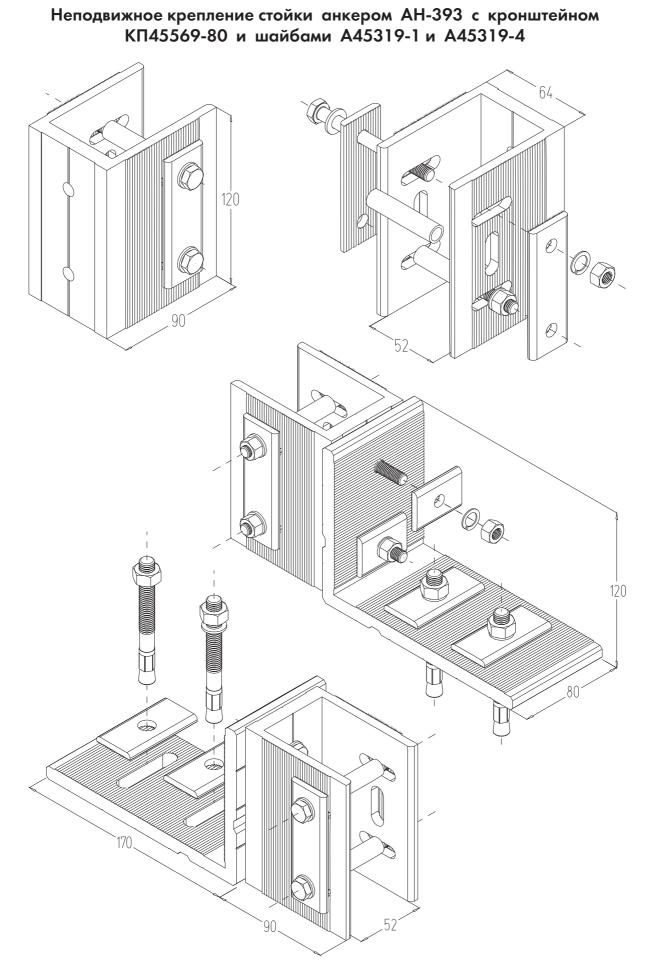
Подвижное крепление стойки анкером АП-567 с кронштейном КП45569-205 и шайбами А45319-1 и А45319-3

Комплектация:


- 1. Анкер А45567-1
- 2. Кронштейн КП45569-205
- 3. Шайба А45319-5
- 4. Шайба А45319-1
- 5. Шайба А45319-3
- 6. Τρуба φ11,65x1,5x74

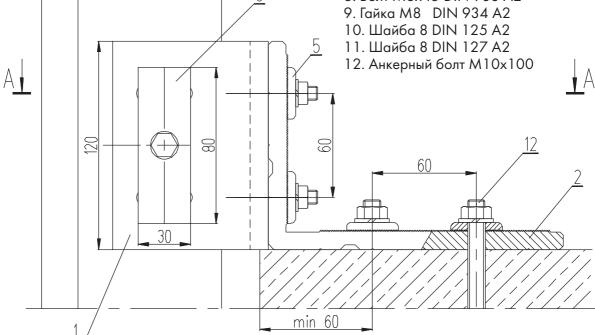

Подвижное крепление стойки анкером АП-567 с кронштейном КП45569-205 и шайбами А45319-1 и А45319-3

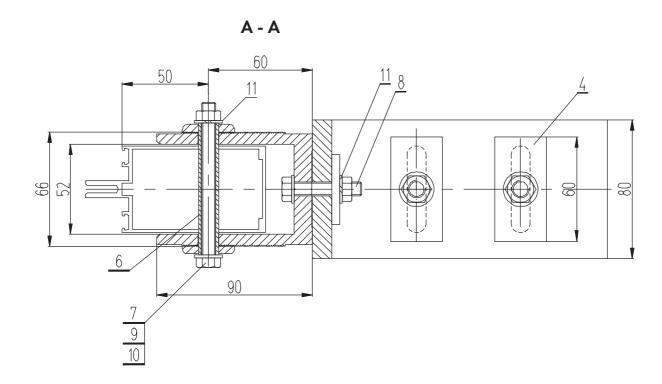



Неподвижное крепление стойки анкером АН-393 с кронштейном КП45569-80 и шайбами А45319-1 и А45319-4

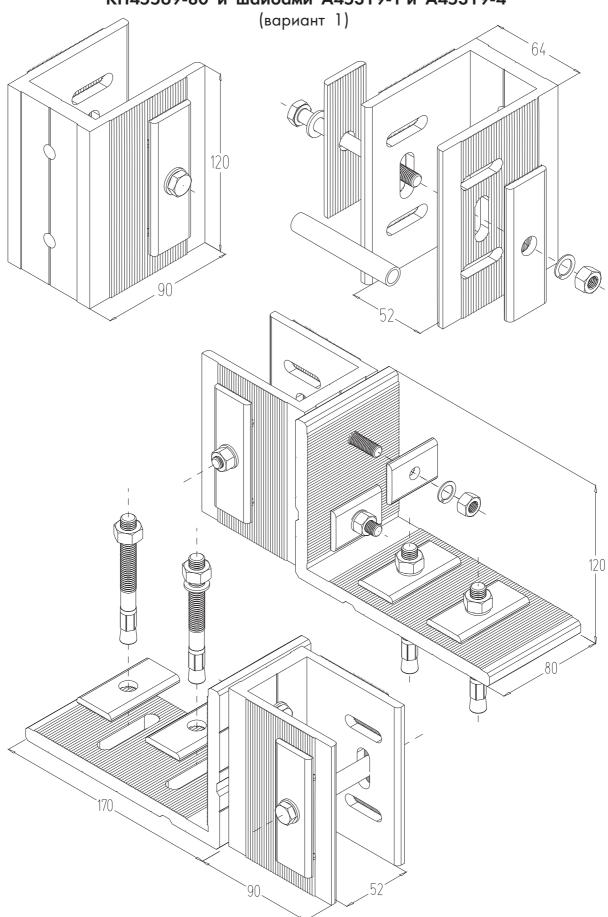
Комплектация:

- 1. Анкер А45393-1
- 2. Кронштейн КП45569-80
- 3. Шайба А45319-2
- 4. Шайба А45319-1
- 5. Шайба А45319-4
- 6. Τρуба φ11,65x1,5x52
- 7. Болт M8x100 DIN 933 A2
- 8. Болт M8x45 DIN 933 A2

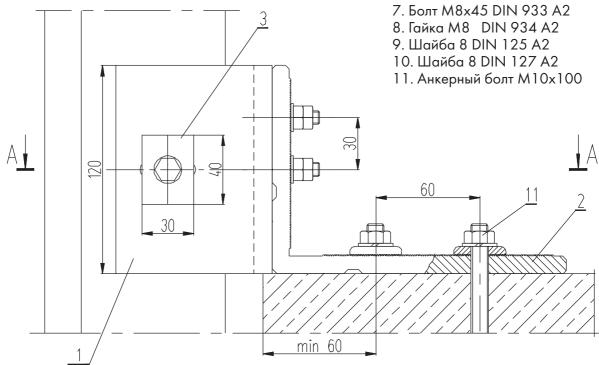


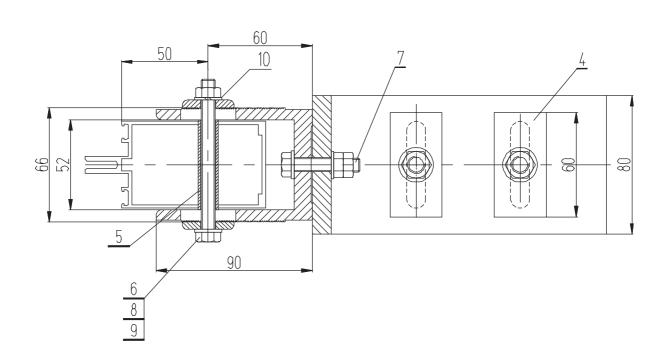

Подвижное крепление стойки анкером АП-393 с кронштейном КП45569-80 и шайбами А45319-1 и А45319-4

(вариант 1)


- 1. Анкер А45393-1
- 2. Кронштейн КП45569-80
- 3. Шайба А45319-5
- 4. Шайба А45319-1
- 5. Шайба А45319-4
- 6. Τρуба φ11,65x1,5x75,5
- 7. Болт M8x100 DIN 933 A2
- 8. Болт М8х45 DIN 933 A2

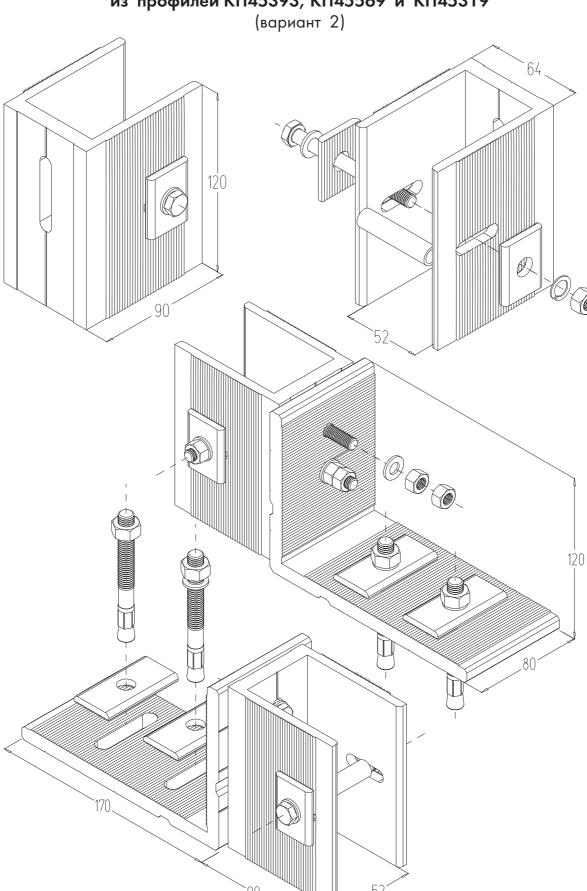
Подвижное крепление стойки анкером АП-393 с кронштейном КП45569-80 и шайбами А45319-1 и А45319-4

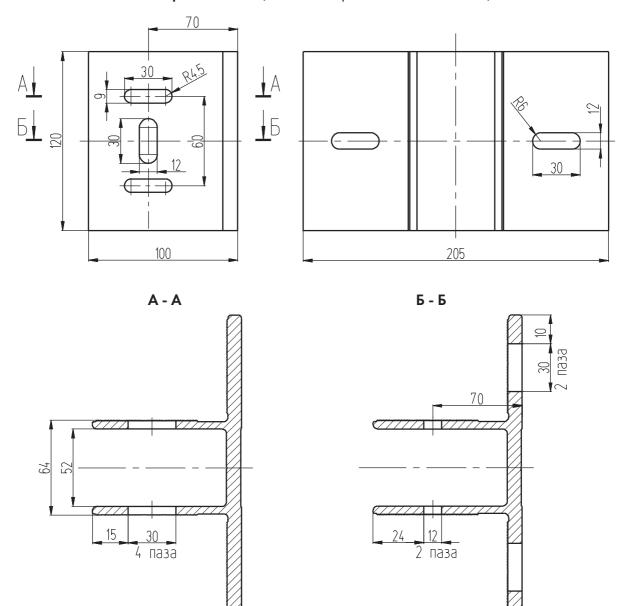


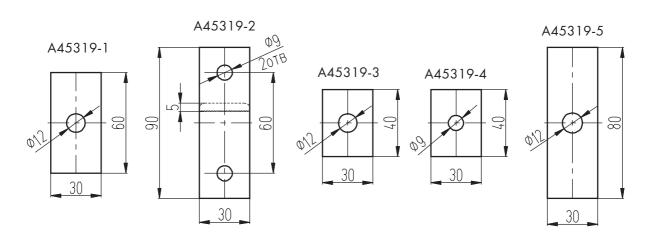

Подвижное крепление стойки анкером из профилей КП45393, КП45569 и КП45319

(вариант 2)

Комплектация:

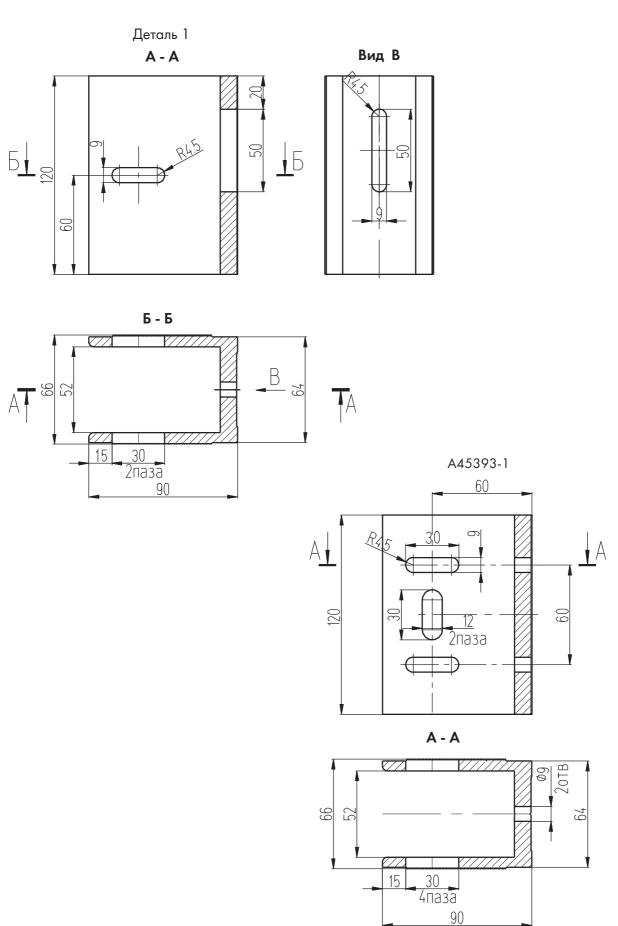

- 1. Анкер КП45393 (дет. 1)
- 2. Кронштейн КП45569 (дет. 1)
- 3. Шайба А45319-4
- 4. Шайба А45319-1
- 5. Труба ф11,65x1,5x52
- 6. Болт M8x100 DIN 933 A2


Подвижное крепление стойки анкером из профилей КП45393, КП45569 и КП45319

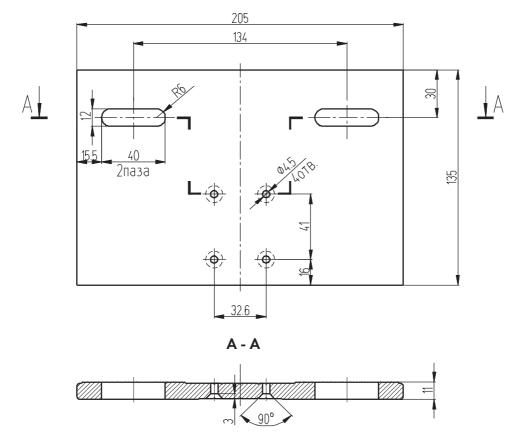


Обработка деталей

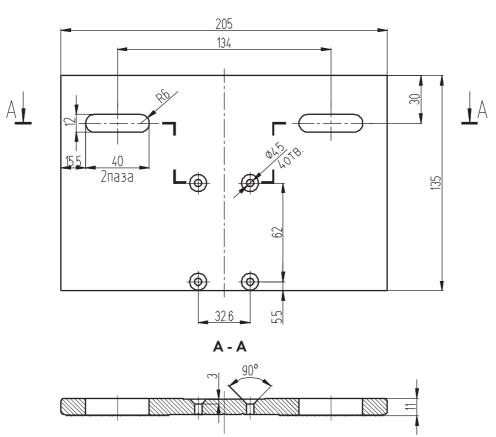
Анкер А45567-1 (деталь анкеров АН-567 и АП-567)



Шайба КП45319

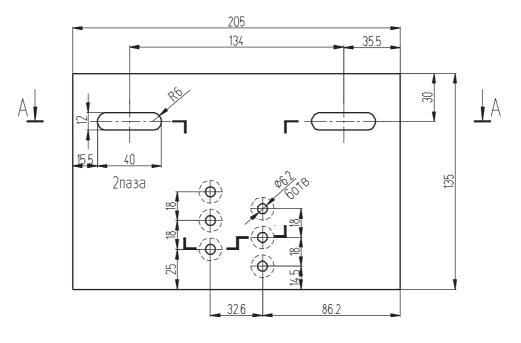


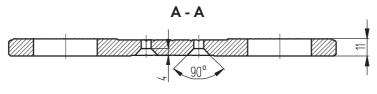
Обработка деталей. Анкер КП45393

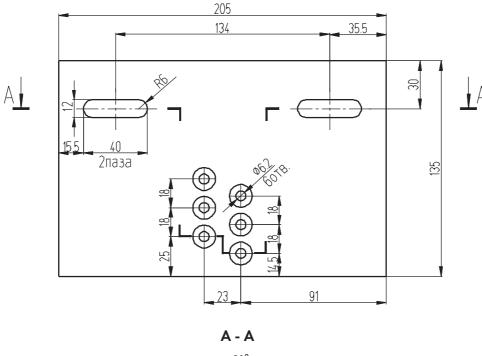


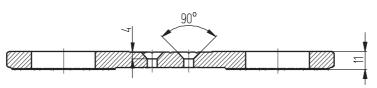
Обработка деталей. Анкеры из профиля КП45568

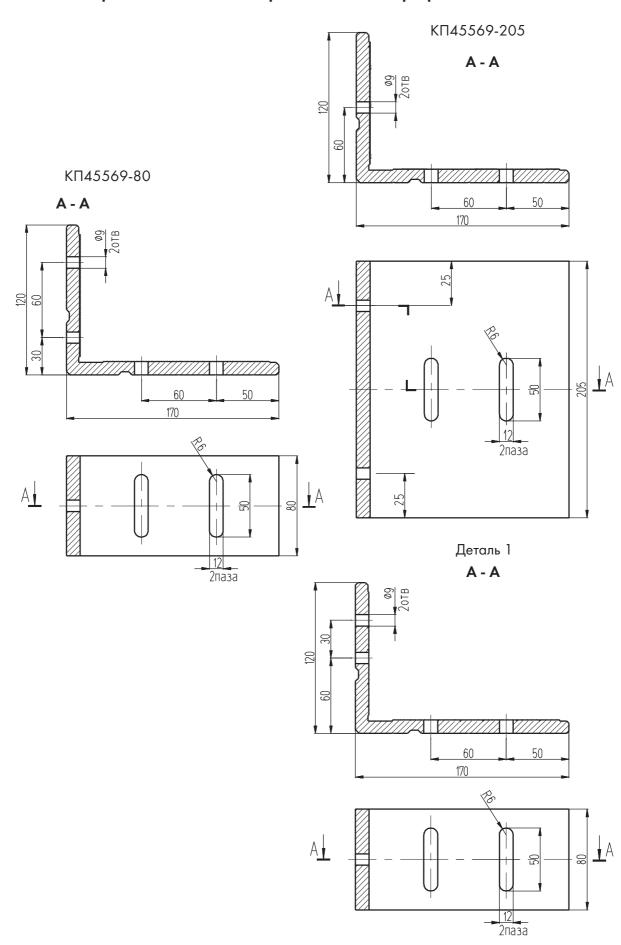
Анкер КП45568-135-1

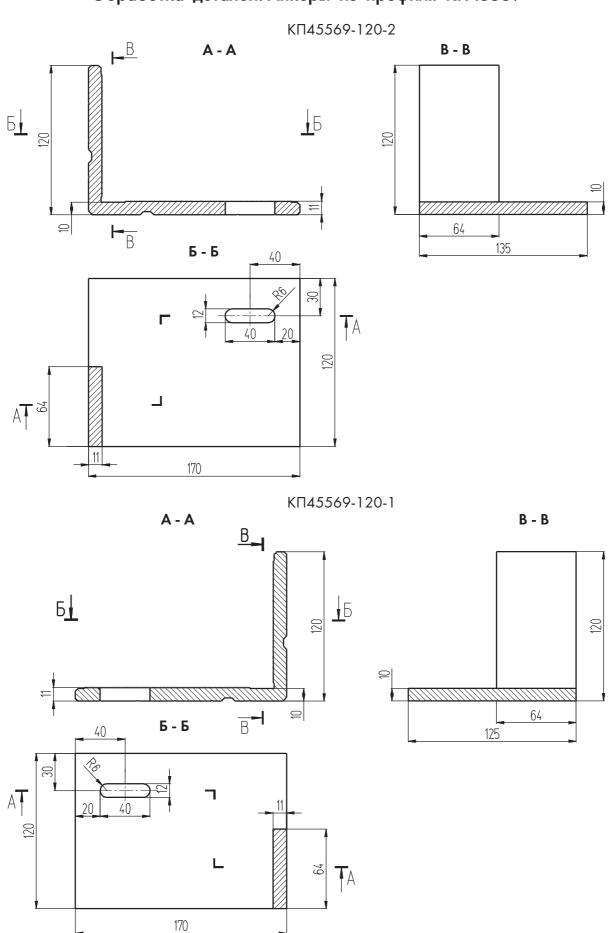



Анкер КП45568-135-2


Обработка деталей. Анкеры из профиля КП45568

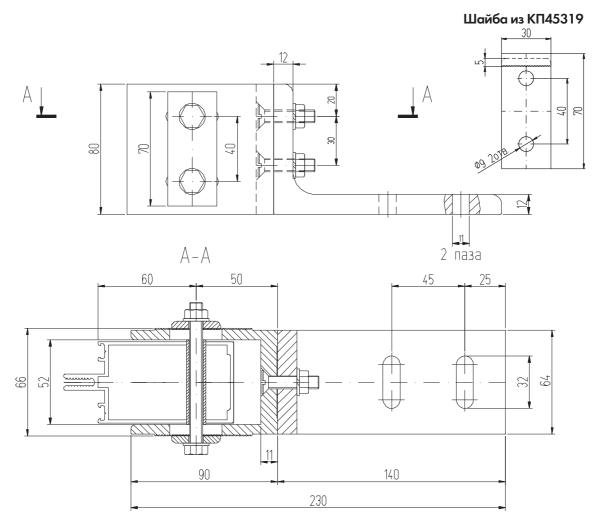

Анкер КП45568-135-3

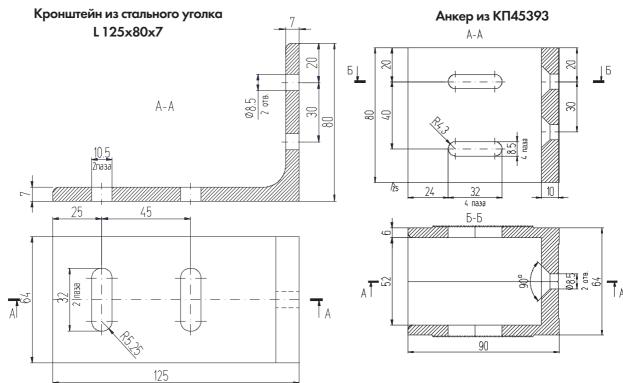

Анкер КП45568-135-4

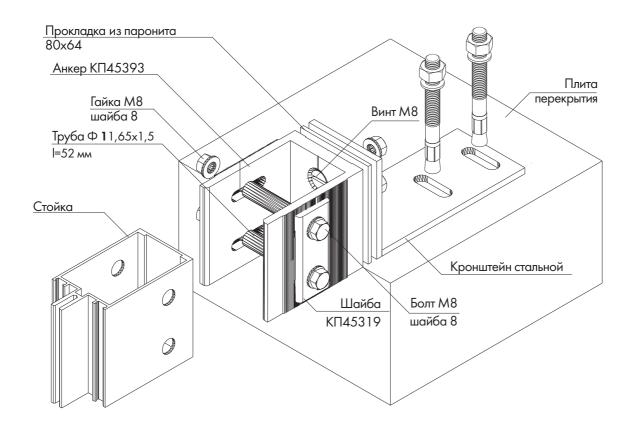


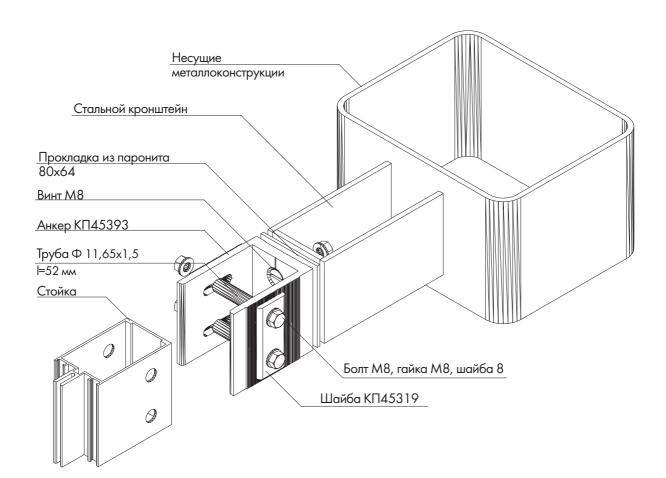
®

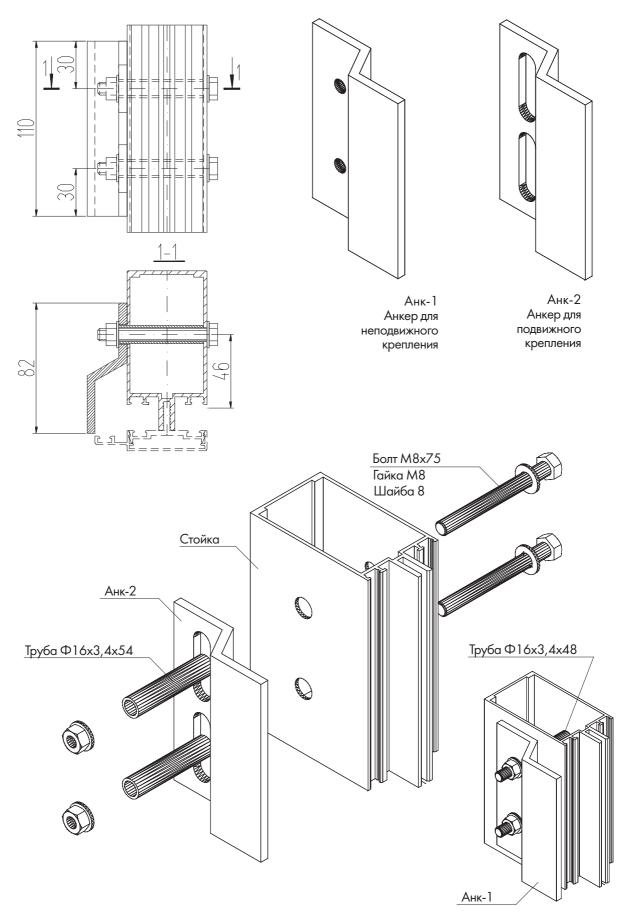
Обработка деталей. Кронштейны из профиля КП45569

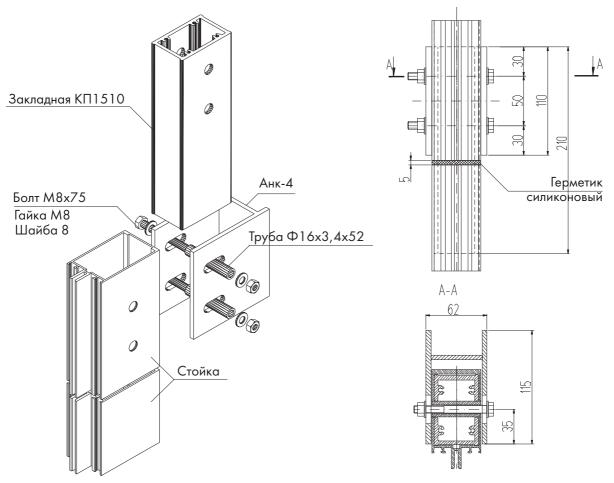



Обработка деталей. Анкеры из профиля КП45569

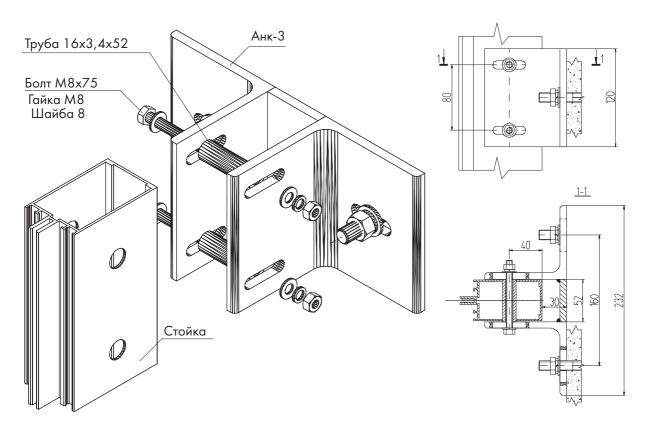

Крепление стойки анкером КП45393



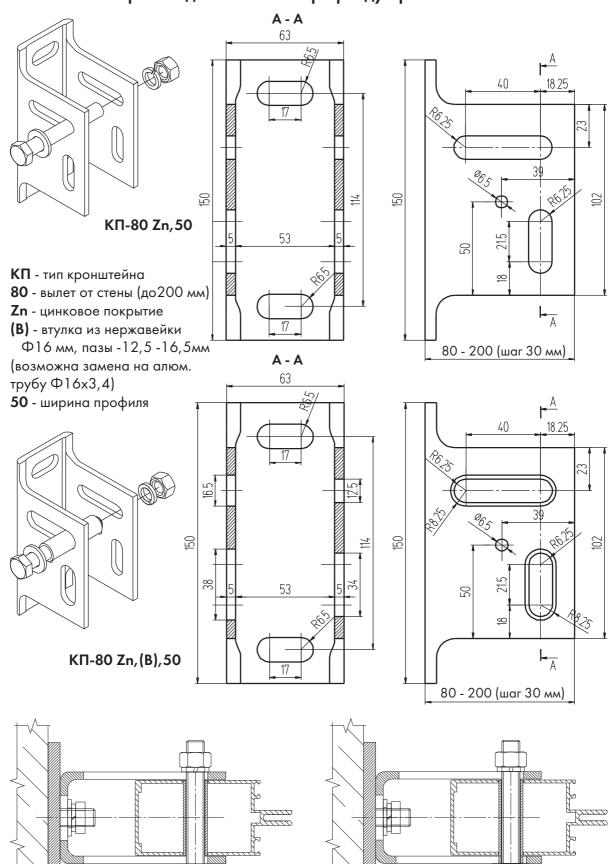

Крепление стойки анкером КП45393


КРЕПЛЕНИЕ С ПОМОЩЬЮ СТАЛЬНЫХ АНКЕРОВ

Крепление стоек стальными анкерами Анк-1 и Анк-2

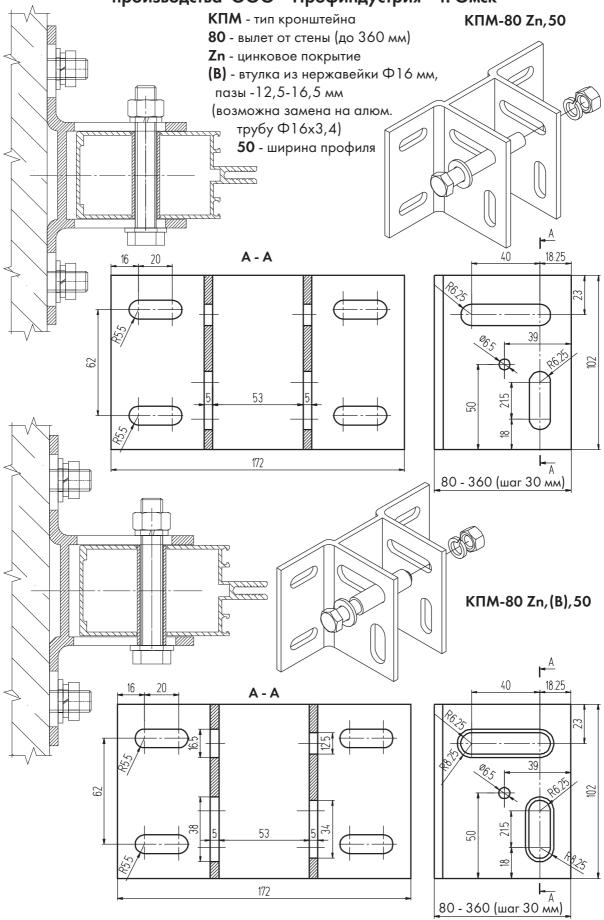


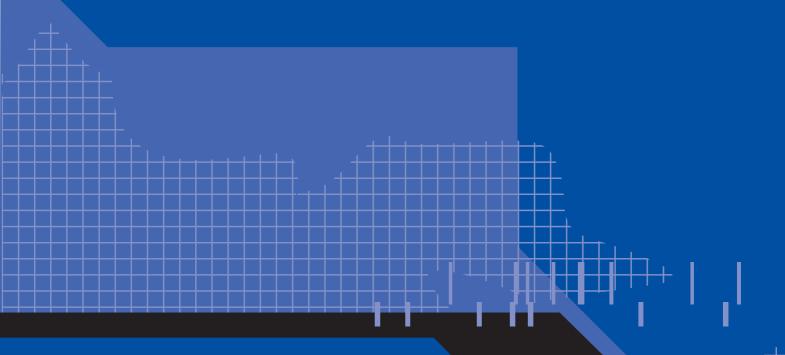
Крепление стойки КП45370 стальным анкером Анк-4



Крепление стоек стальным анкером Анк-3

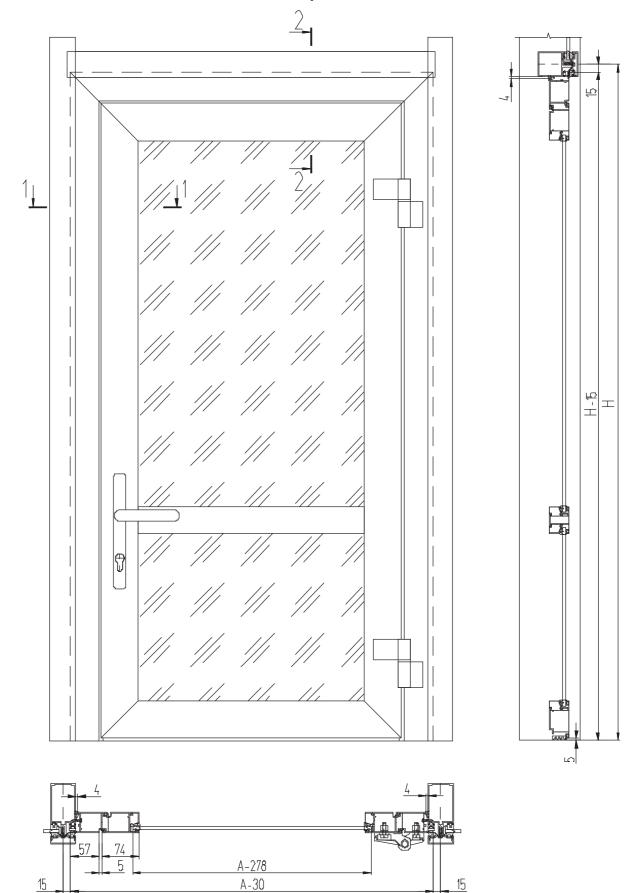
R

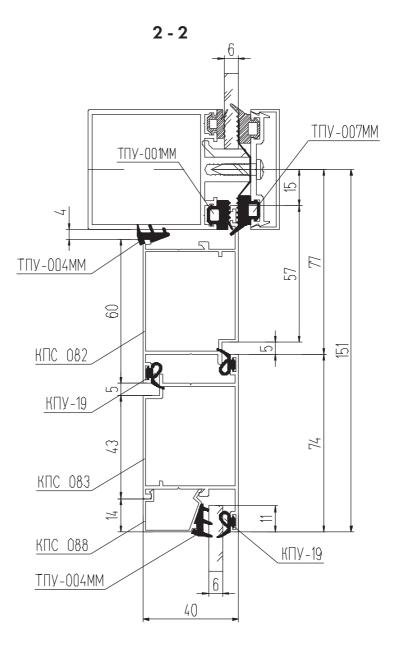

Крепление стойки КП45370 стальным кронштейном КП производства ООО "Профиндустрия" г. Омск


80-200

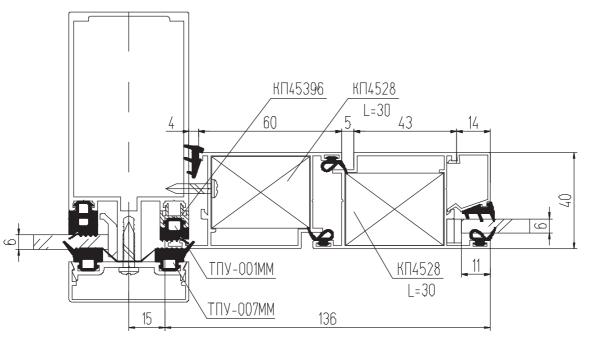
80-200

Крепление стойки КП45370 стальным кронштейном КПМ производства ООО "Профиндустрия" г. Омск

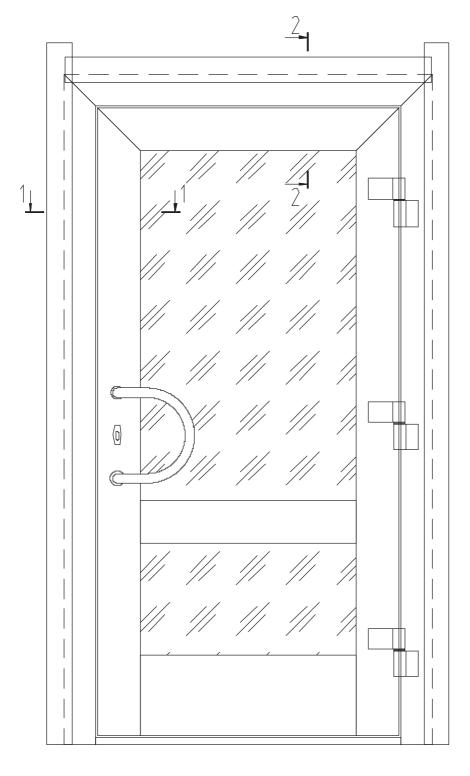

ВСТРАИВАЕМЫЕ КОНСТРУКЦИИ

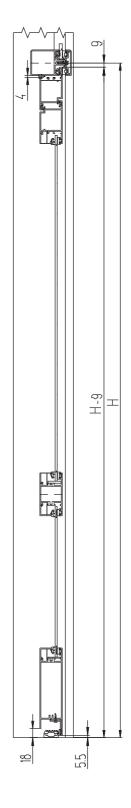

Двери Оконные створки Вентиляционные люки

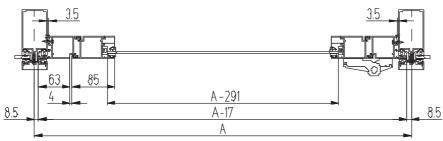
Створки с открыванием наружу

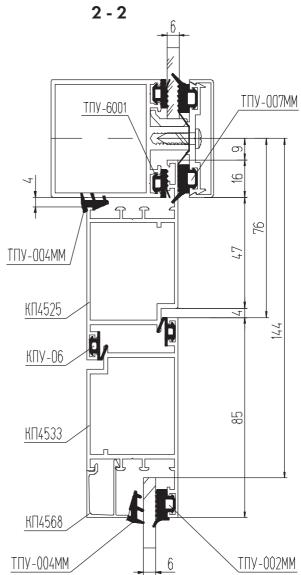


УСТАНОВКА ДВЕРЕЙ С ОТКРЫВАНИЕМ НАРУЖУ Установка "холодной" двери КП40 с заполнением 6 мм

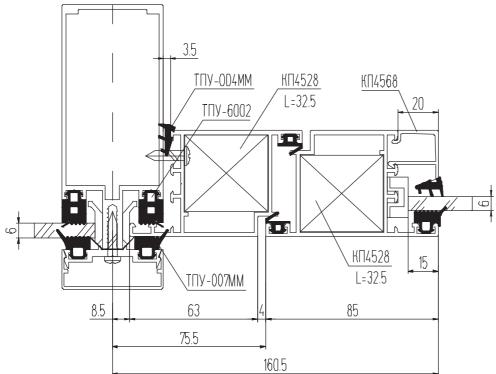


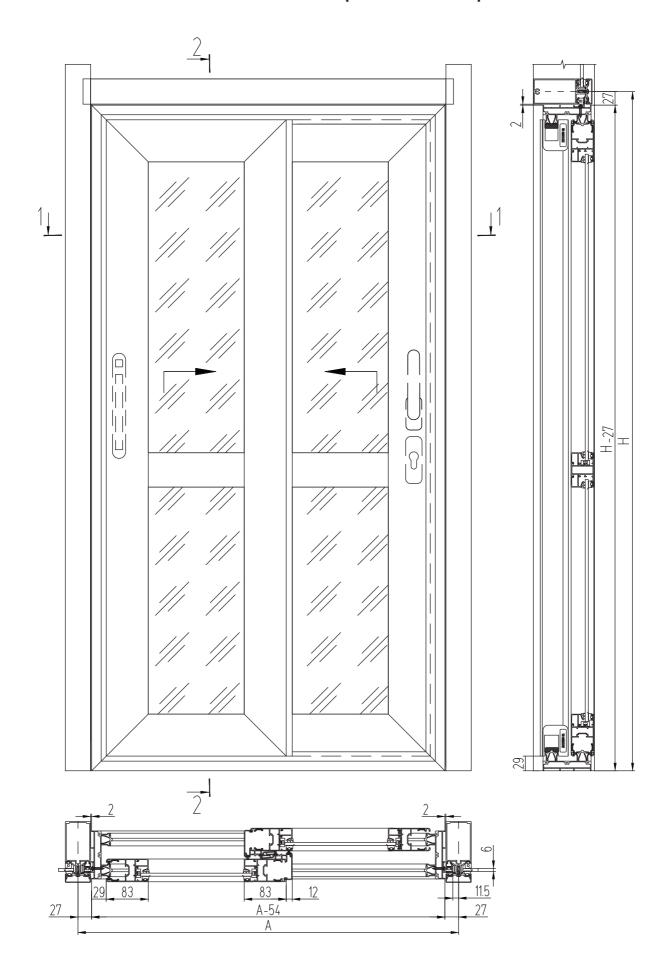

1 - 1




R

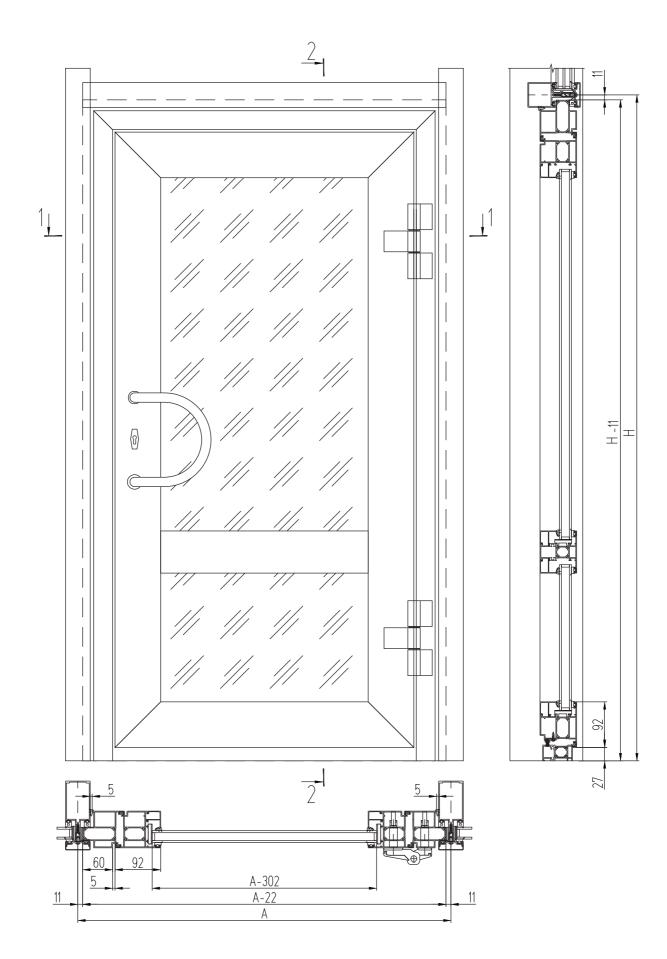
Установка "холодной" двери КП45 с заполнением 6 мм



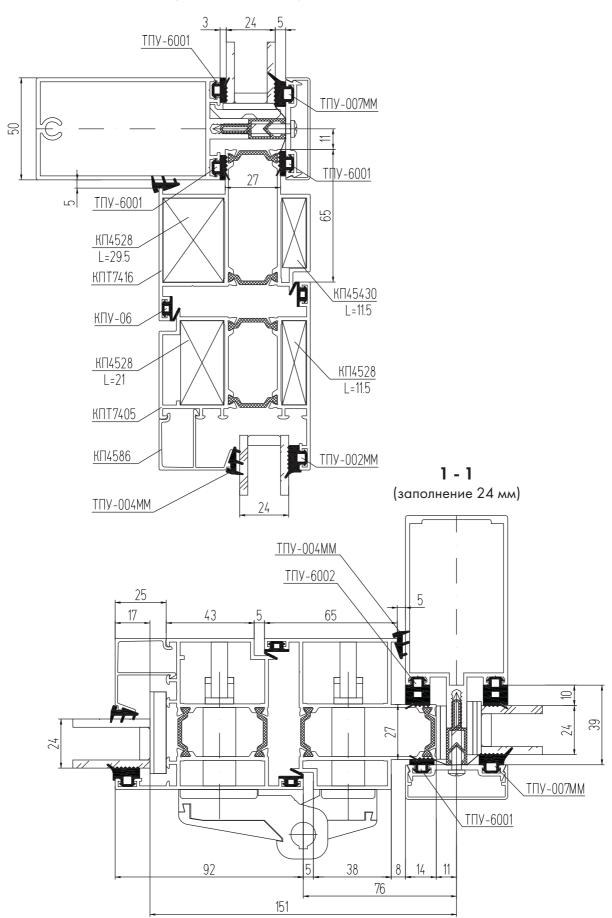


1 - 1

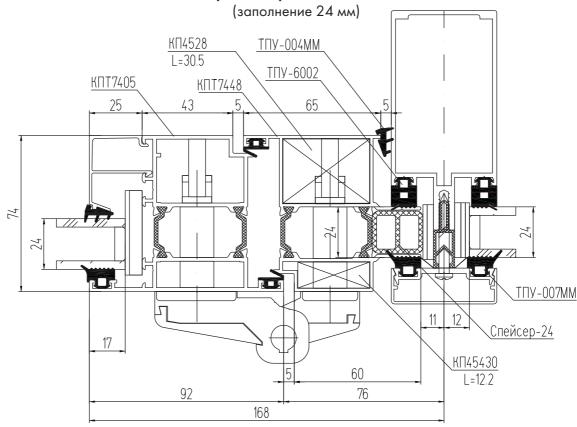
| KПУ-06 |
| KП4533 |
| KП4568 |
| TПУ-004ММ |
| KП4528 |
| L=32.5 |
| Z0 |
|



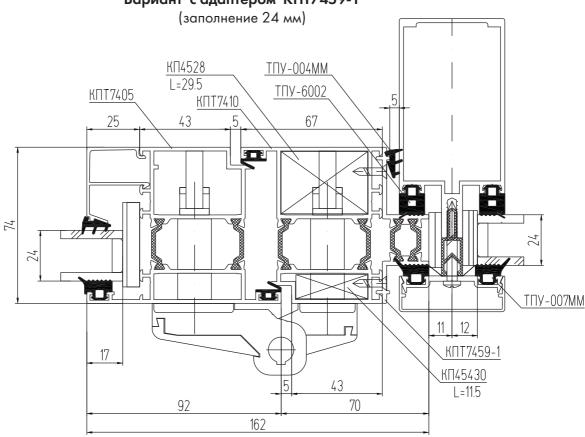
Установка "холодной" подъемно-раздвижной двери КП45 GOS-S

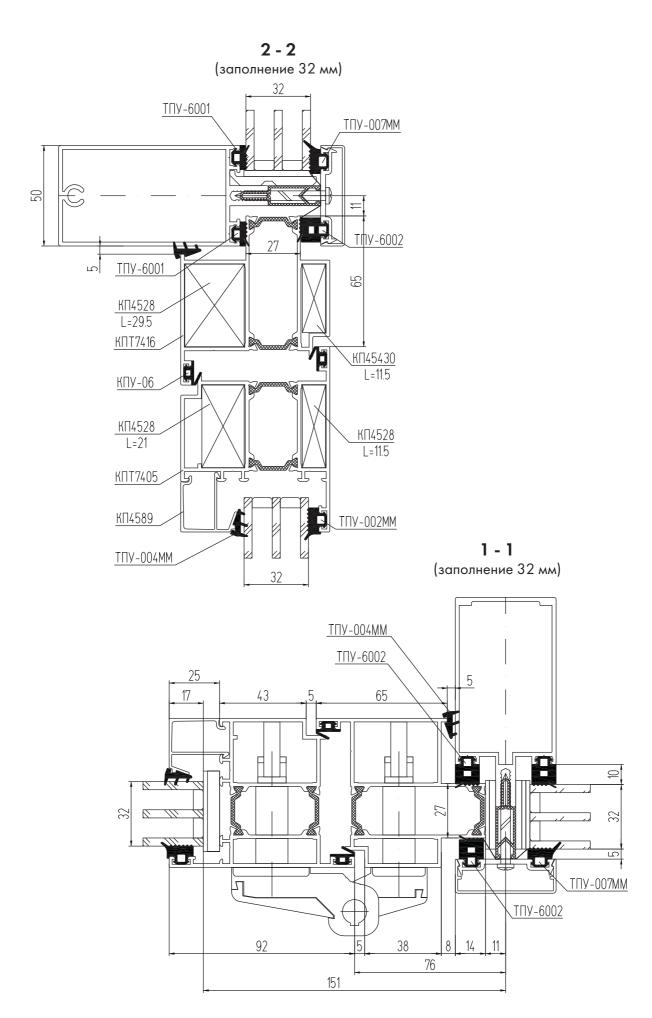


Установка "теплой" двери КПТ74 с заполнением 24 или 32 мм

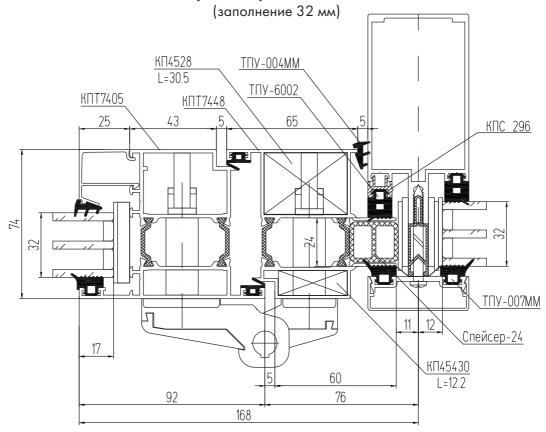


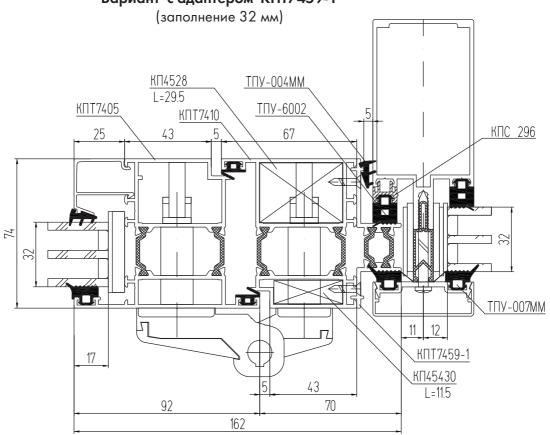
2 - 2 (заполнение 24 мм)



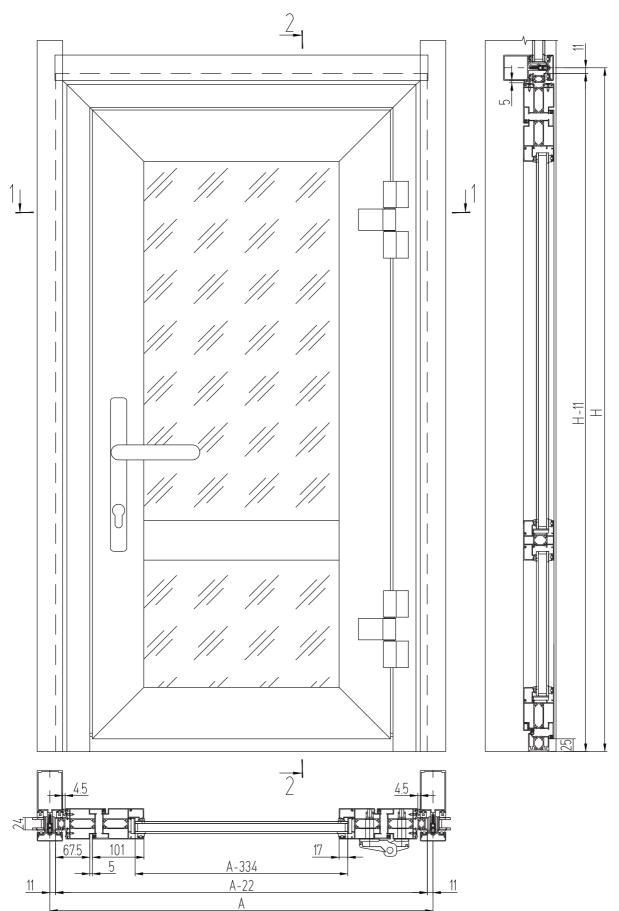

1 - 1 Вариант с рамой КПТ7448

1 - 1 Вариант с адаптером КПТ7459-1

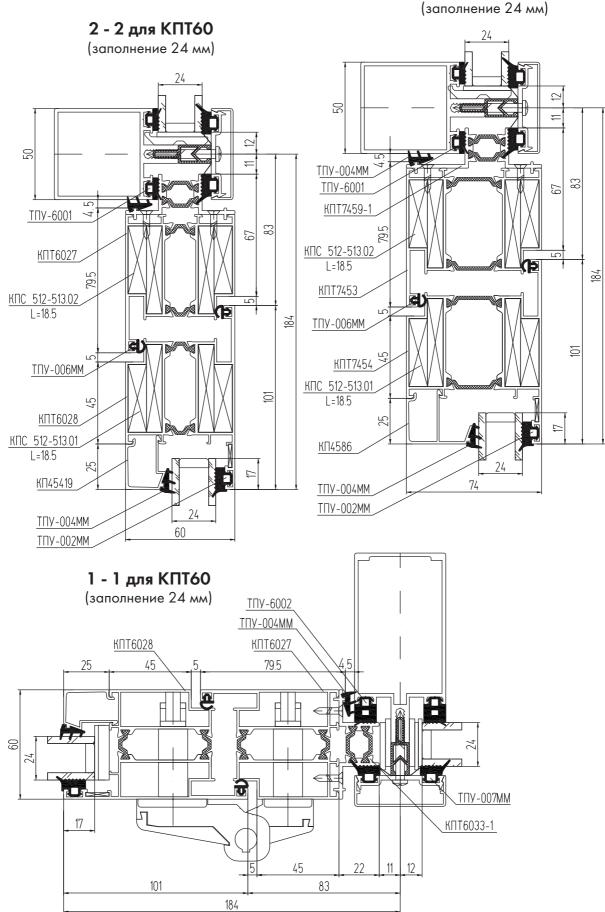




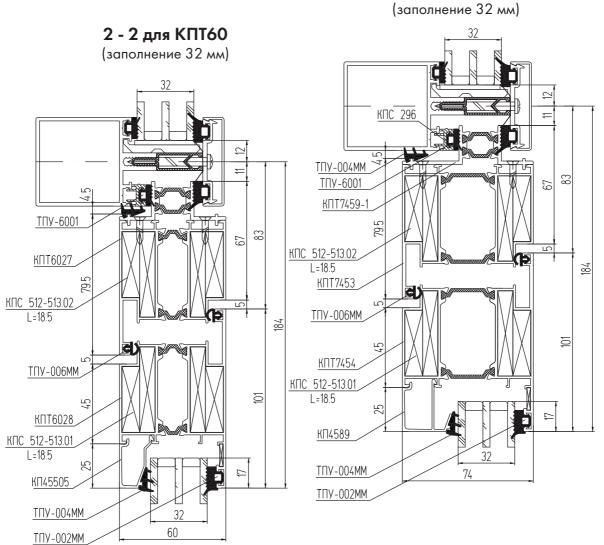
1 - 1 Вариант с рамой КПТ7448

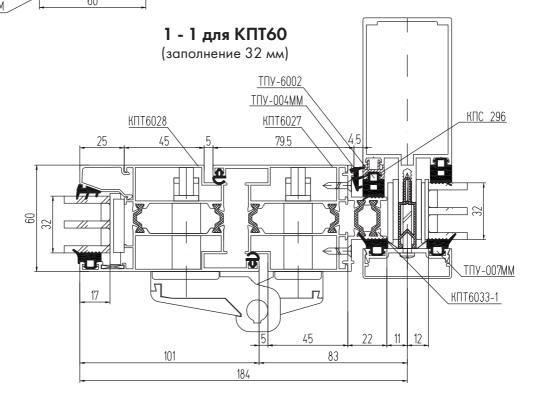


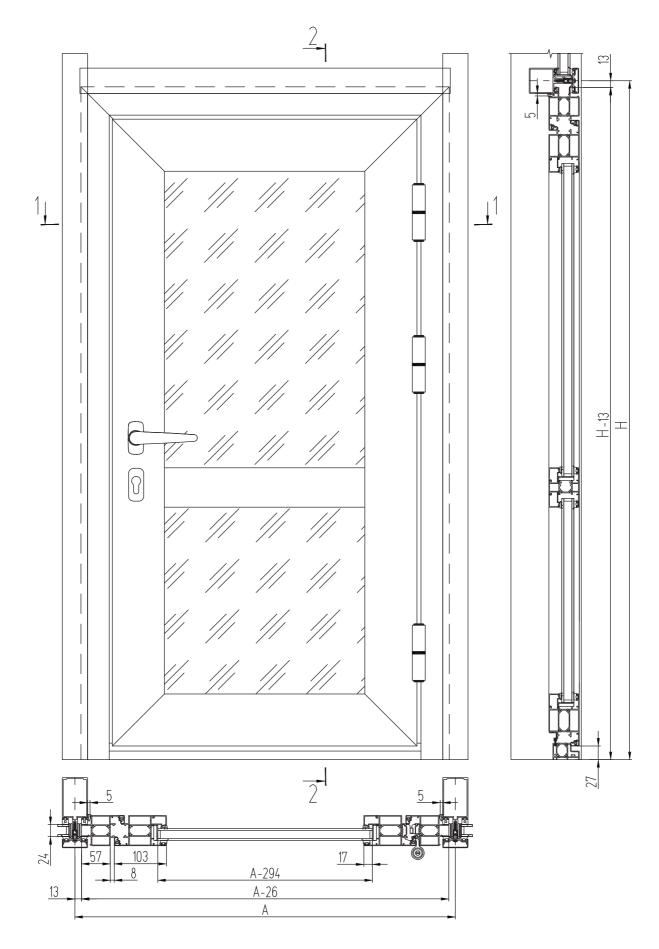
1 - 1 Вариант с адаптером КПТ7459-1

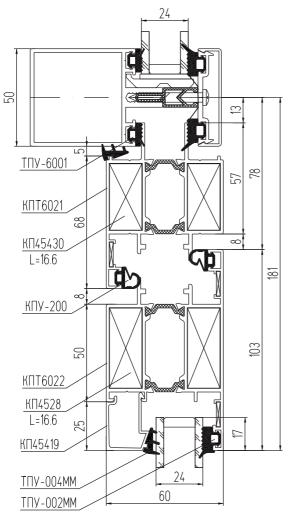

®

Установка "теплой" бесштульповой двери КПТ74 и КПТ60 с заполнением 24 или 32 мм

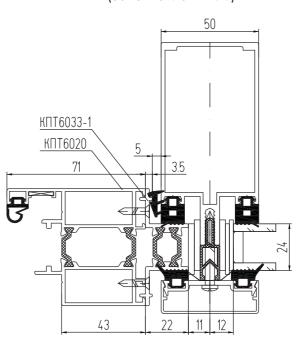


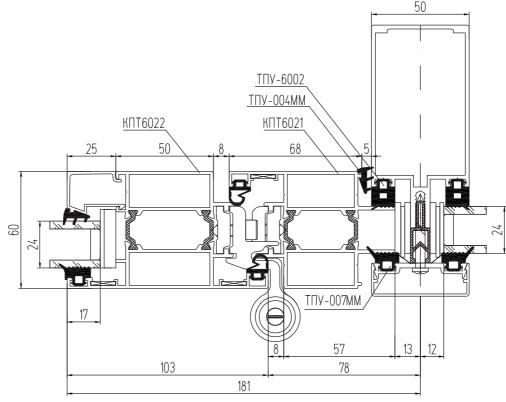

2 - 2 для КПТ74 Вариант с адаптером КПТ7459-1


2 - 2 для КПТ74 Вариант с адаптером КПТ7459-1

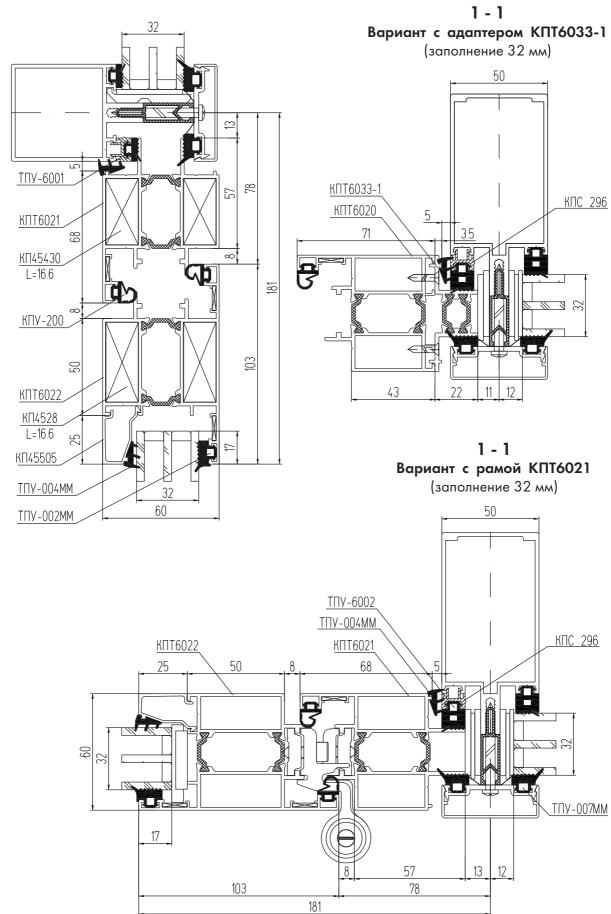

®

Установка "теплой" двери КПТ60 с заполнением 24 или 32 мм с петлями на клеммах

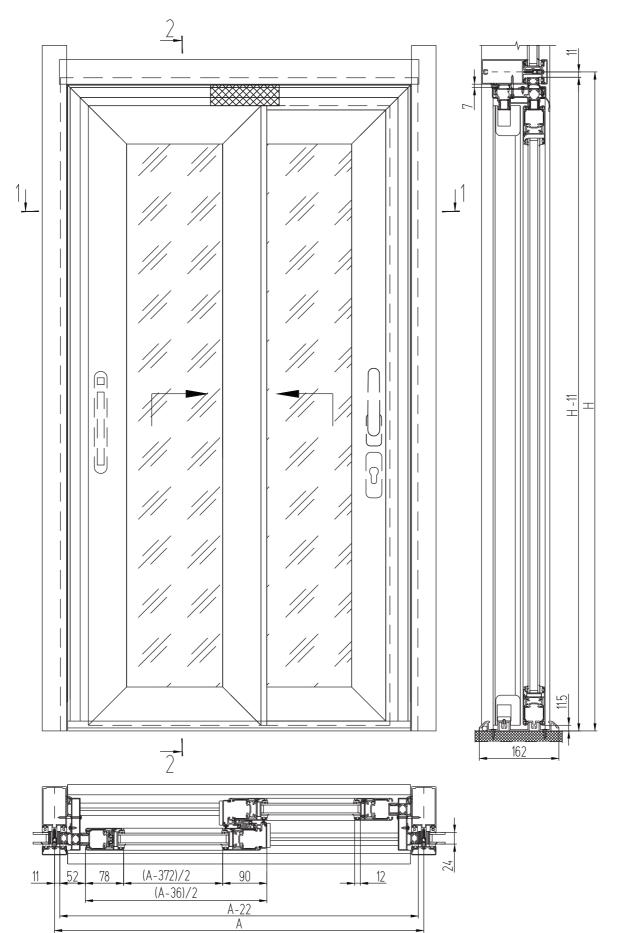



2 - 2 (заполнение 24 мм)

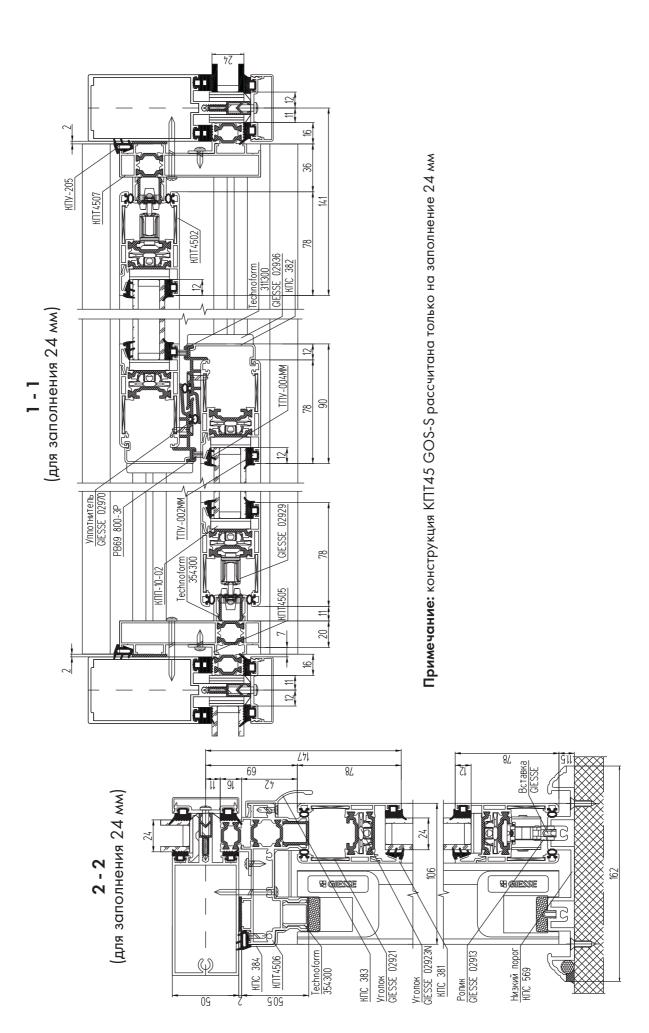
1 - 1 Вариант с адаптером КПТ6033-1 (заполнение 24 мм)



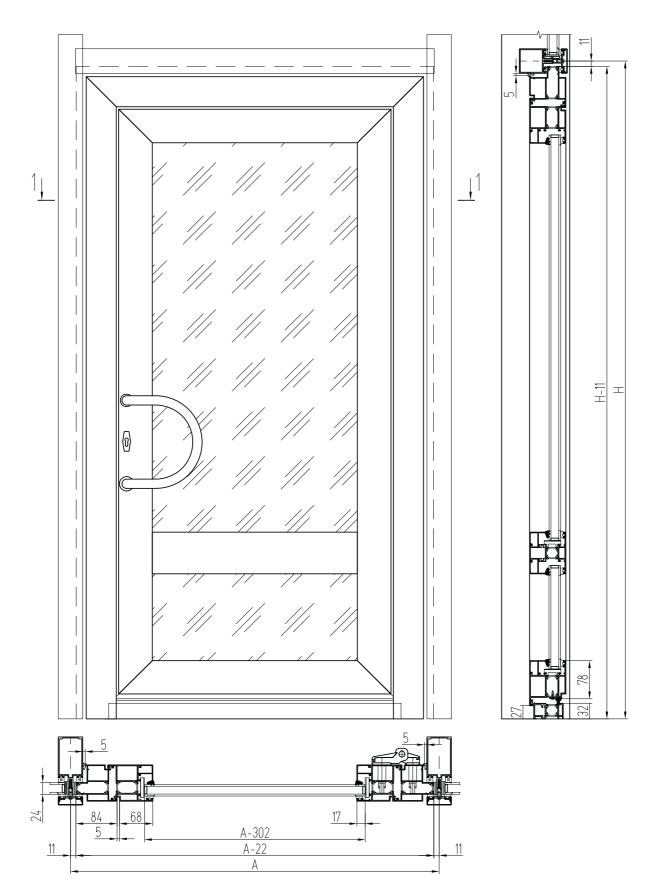
1 - 1 Вариант с рамой КПТ6021 (заполнение 24 мм)


(R)

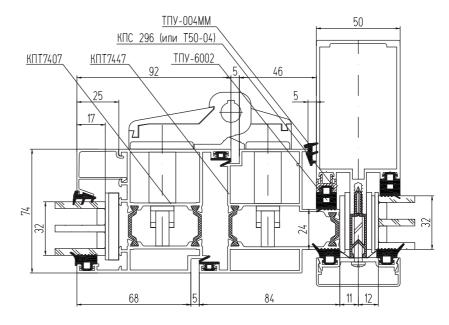
2 - 2 (заполнение 32 мм)

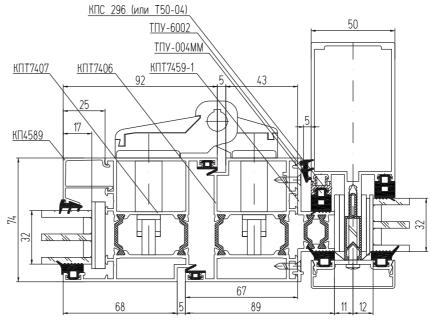


8


Установка "теплой" подъемно-раздвижной двери КПТ45 GOS-S

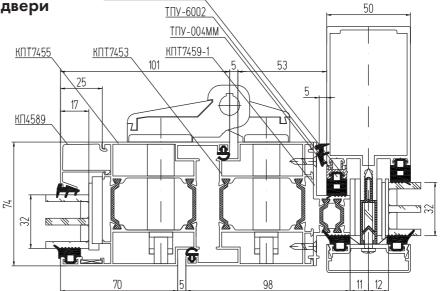
УСТАНОВКА ДВЕРЕЙ С ОТКРЫВАНИЕМ ВНУТРЬ Установка "теплой" двери КПТ74 с заполнением 24 мм




1 - 1 Вариант с рамой КПТ7447

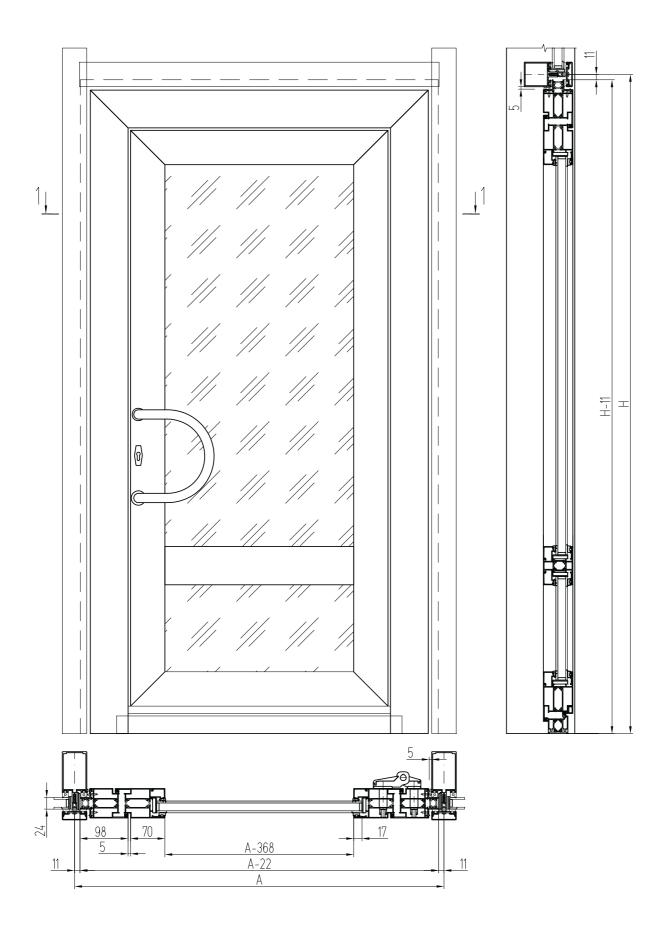
(заполнение 32 мм)

1 - 1 Вариант с адаптером КПТ7459-1

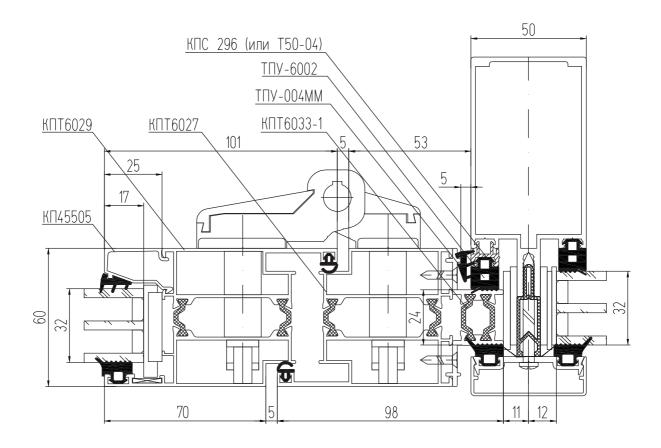

(заполнение 32 мм)

1 - 1

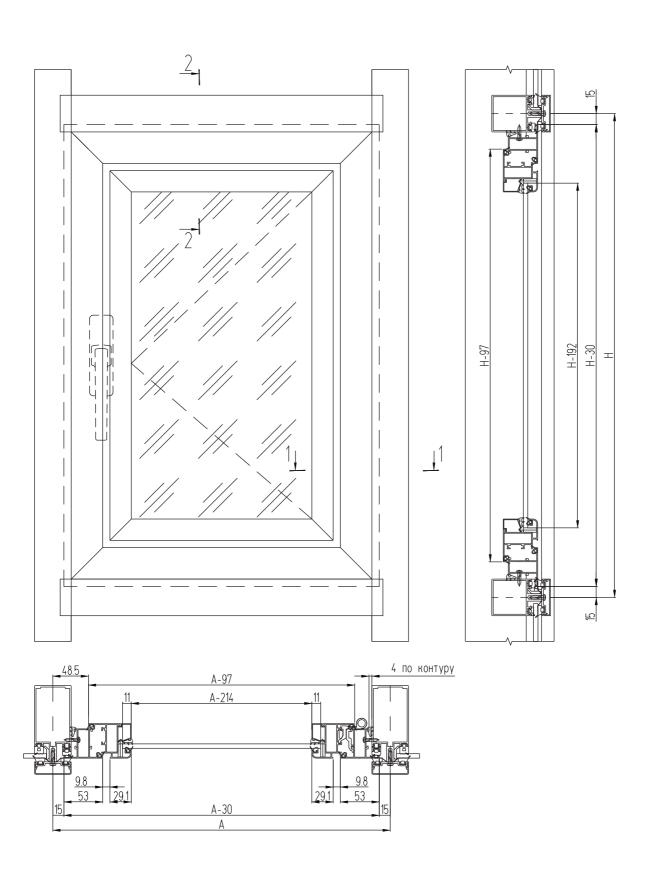
для бесштульповой двери Вариант с адаптером КПТ7459-1


(заполнение 32 мм)

КПС 296 (или Т50-04)

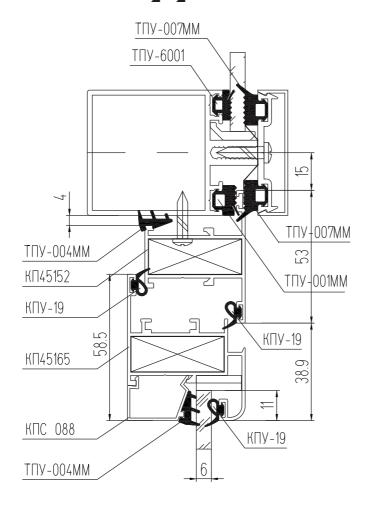


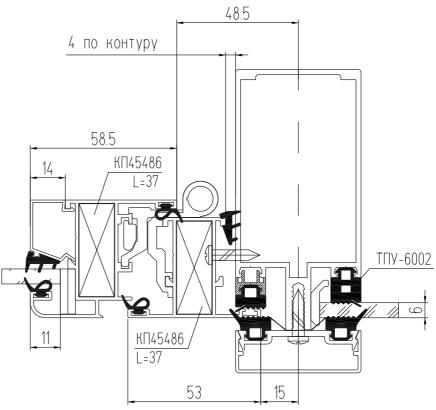
Установка "теплой" бесштульповой двери КПТ60 с заполнением 24 мм


1 - 1 Вариант с бесштульповой дверью (заполнение 32 мм)

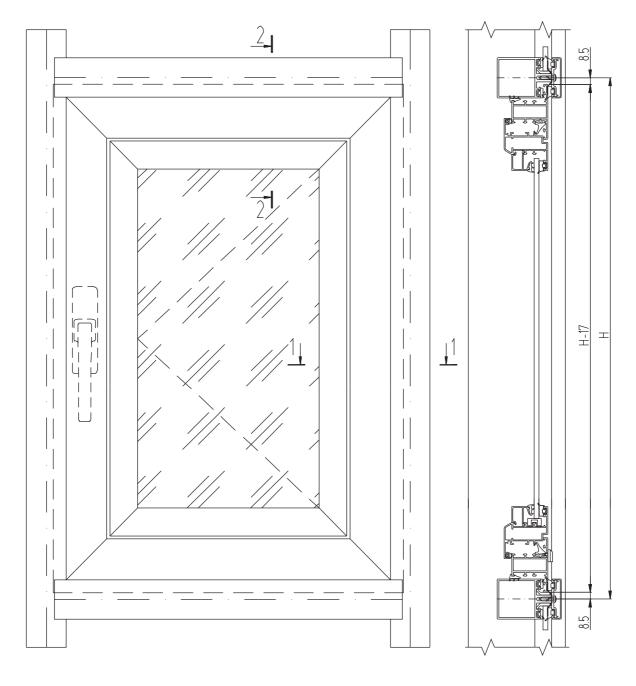
1 - 1 Вариант с петлями на клеммах 50 (заполнение 32 мм) КПС 296 (или Т50-04) КПТ6021 ТПУ-6002 КПУ-200 TПУ-004MM КПТ6023 103 25 17 9 32 75 68 168 13

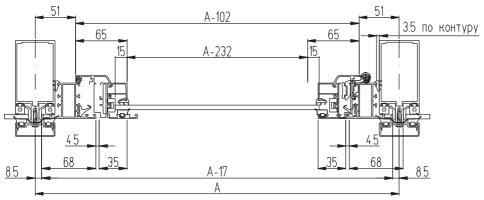
УСТАНОВКА ОКОННЫХ СТВОРОК

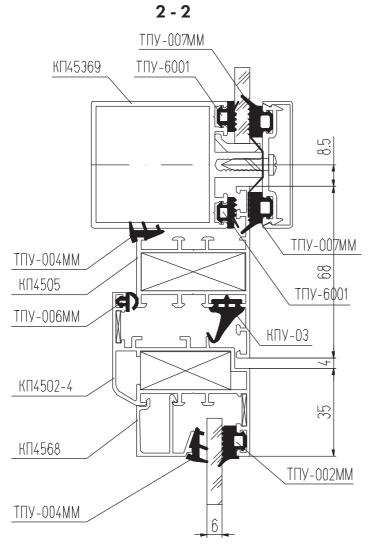

Установка "холодной" оконной створки КП40 с заполнением 6 мм

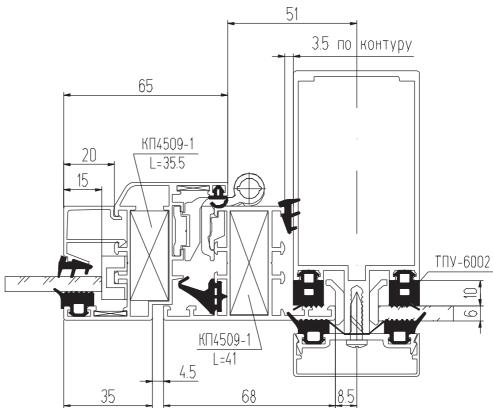


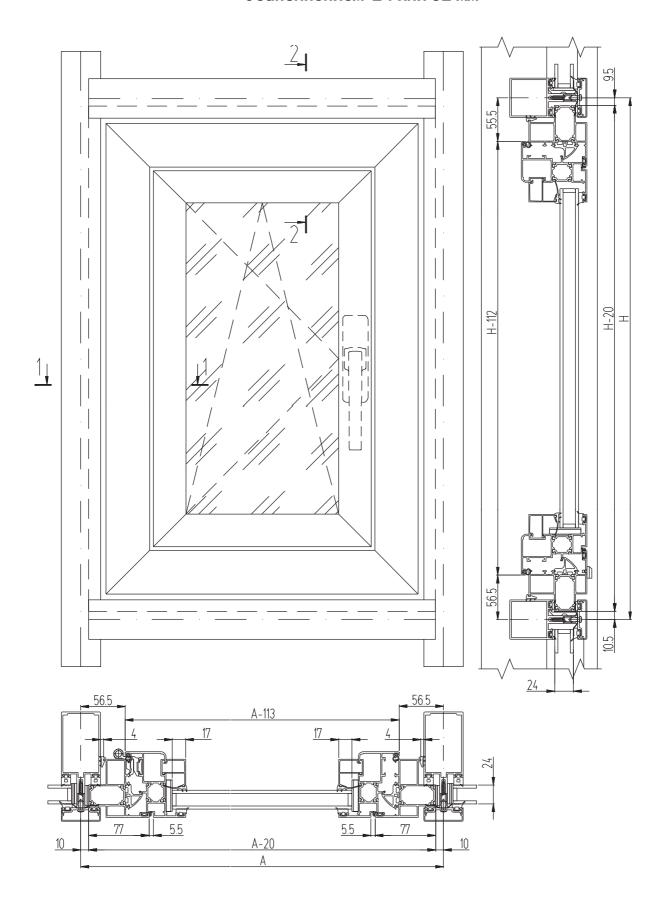
2 - 2



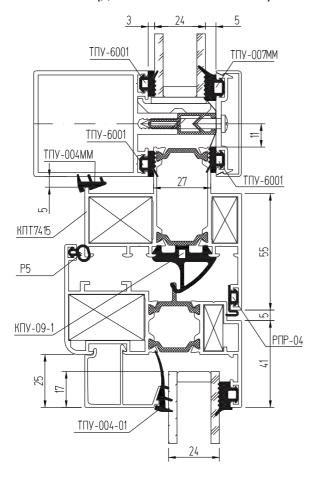

1 - 1



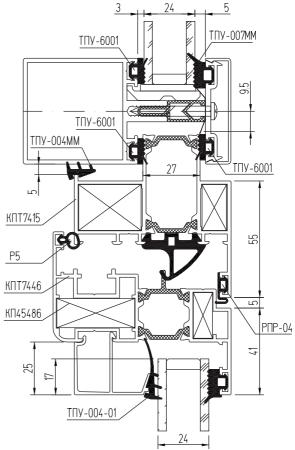

Установка "холодной" оконной створки КП45 с заполнением 6 мм

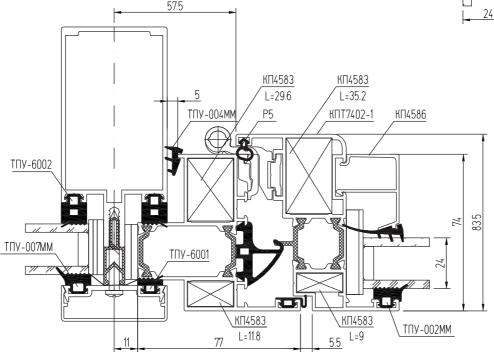


1 - 1

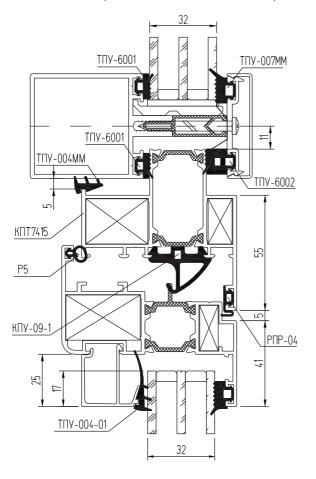


Установка "теплой" оконной створки КПТ74 с заполнением 24 или 32 мм

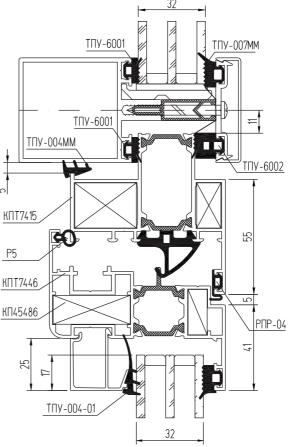



2 - 2 (для заполнения 24 мм)

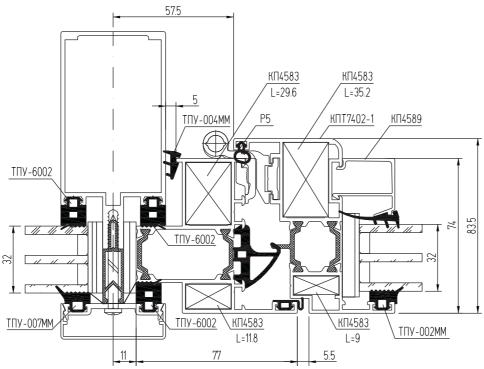
2 - 2 (вариант со створкой под фурнитуру GIESSE ALU16 аналог фурнитуры пластиковых окон)



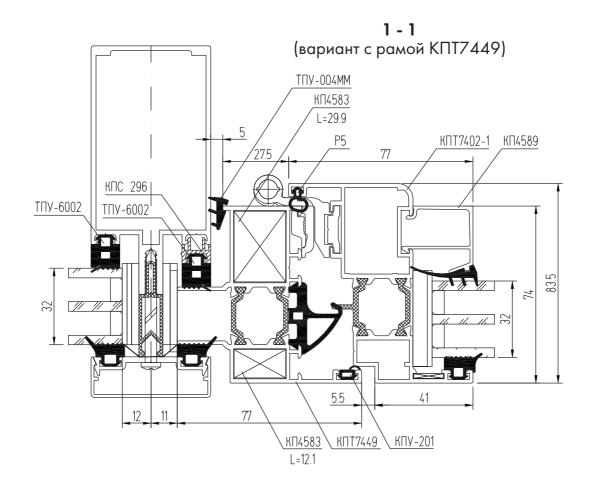
1 - 1 (для заполнения 24 мм)

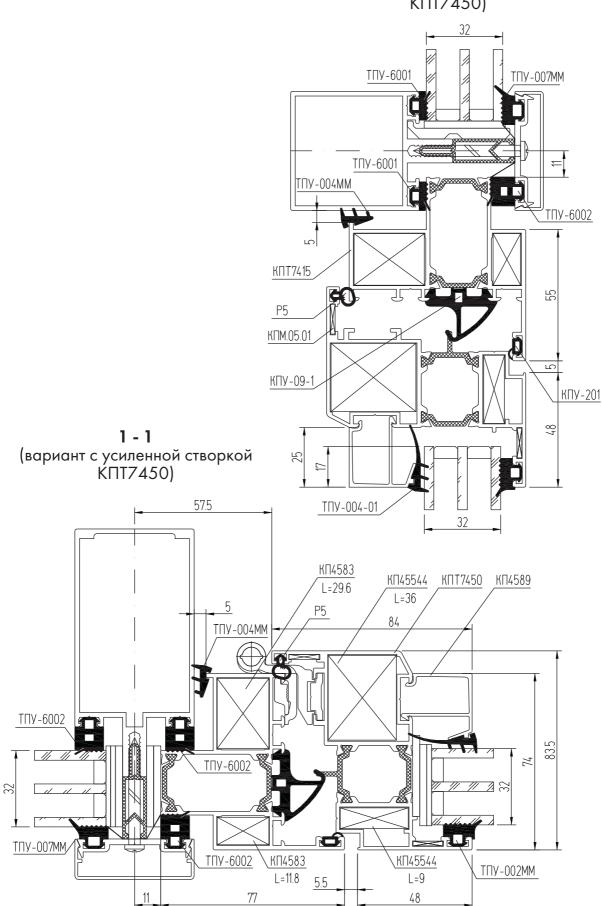


R R

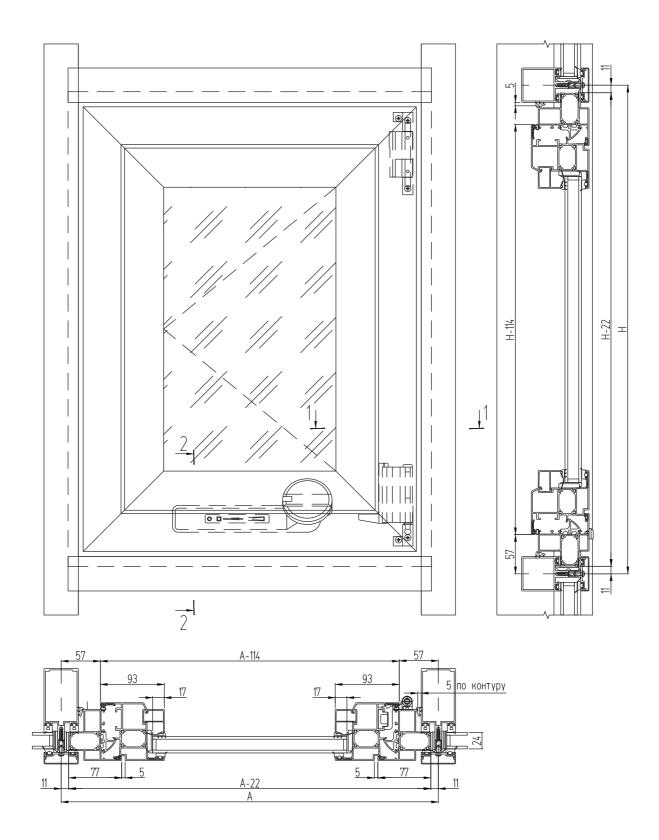

2 - 2 (для заполнения 32 мм)

2 - 2 (вариант со створкой под фурнитуру GIESSE ALU16 аналог фурнитуры пластиковых окон)

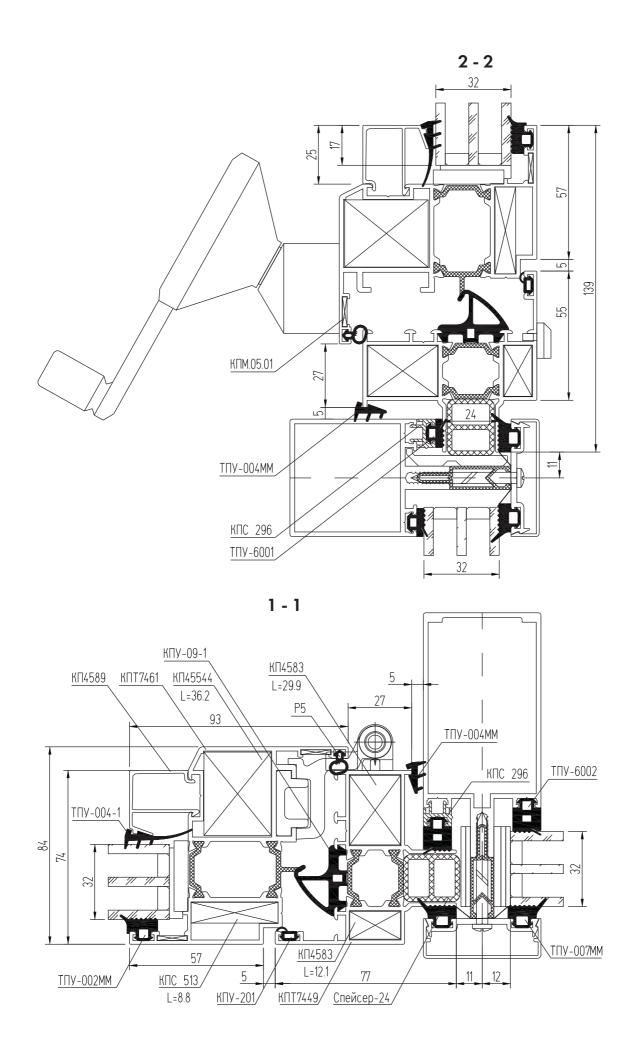

1 - 1 (для заполнения 32 мм)



1 - 1 (вариант с рамой КПТ7401-1 и адаптером КПТ7459-1) КП4583 L=29.6 КПТ7459-1 КПТ7402-1 КП4589 ΤΠУ-00⁴ΜΜ КПС 296 ТПУ-6002 ТПУ-6002 3 [1] <u>ТПУ-007ММ</u> 60 41 82 5.5 11 КП4583 КПТ7401-1 КПУ-201 L=11.8

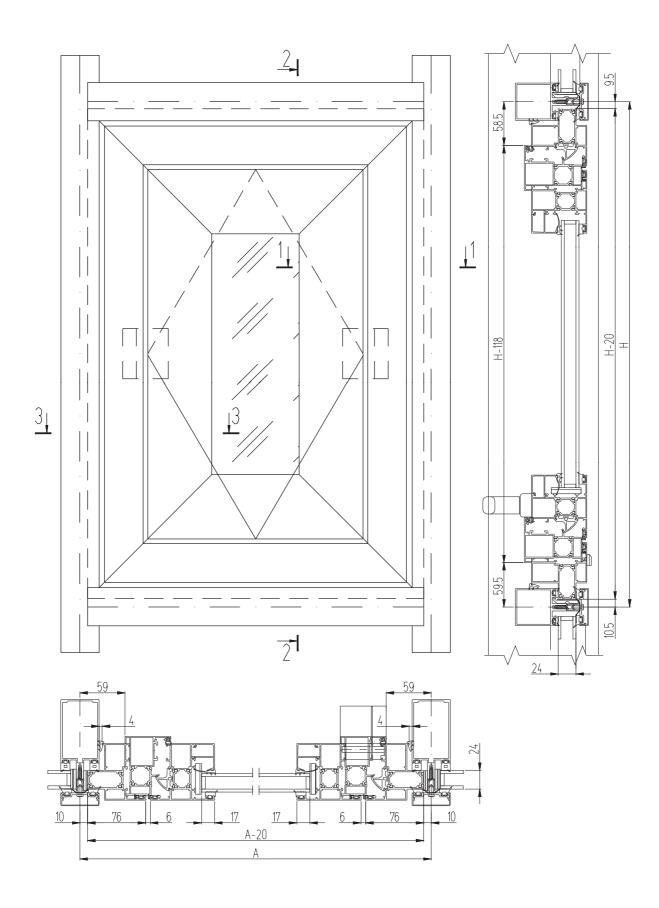

®

2 - 2 (вариант с усиленной створкой КПТ7450)

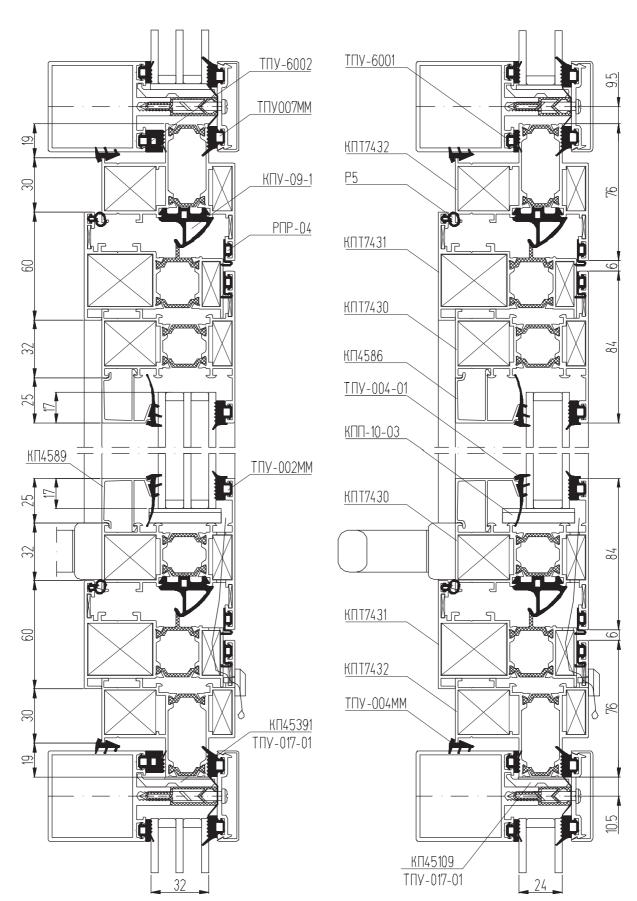


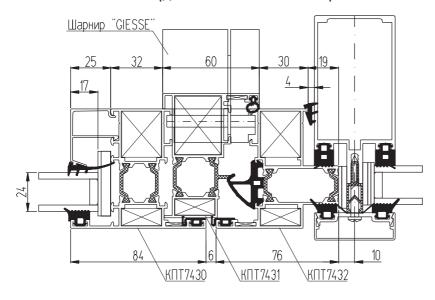
®

Установка "теплой" усиленной оконной створки КПТ74 с фурнитурой GEZE F1200 и заполнением 32 мм

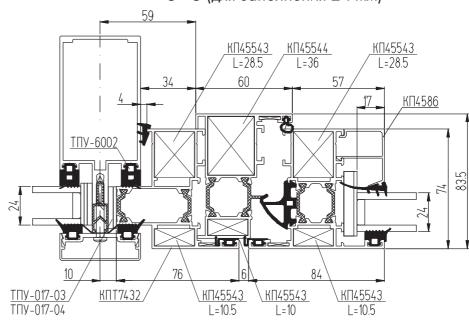


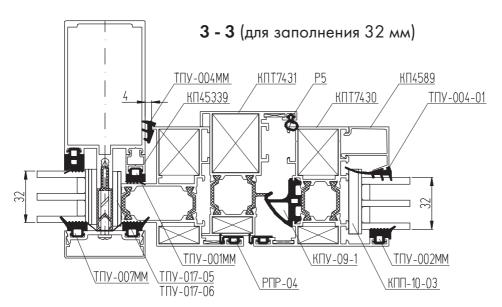
B B B


Установка "теплой" среднеповоротной оконной створки КПТ74 с заполнением 24 или 32 мм

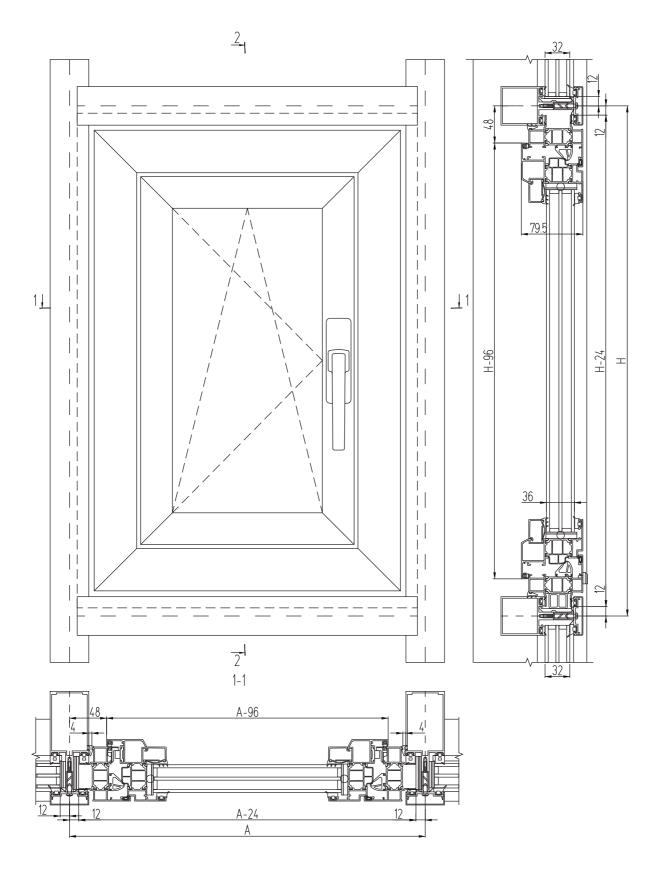

®

2 - 2 (для заполнения 32 мм)

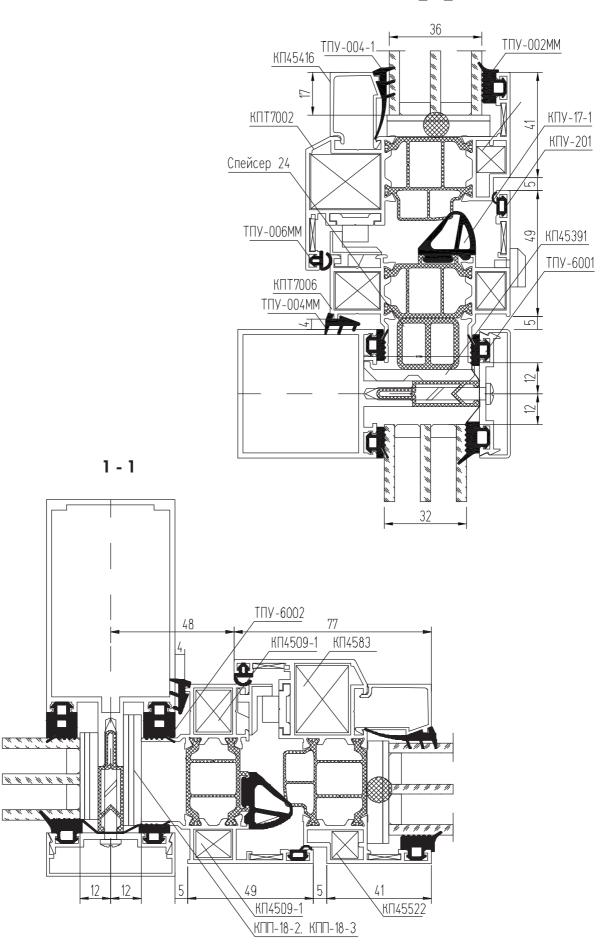

2 - 2 (для заполнения 24 мм)



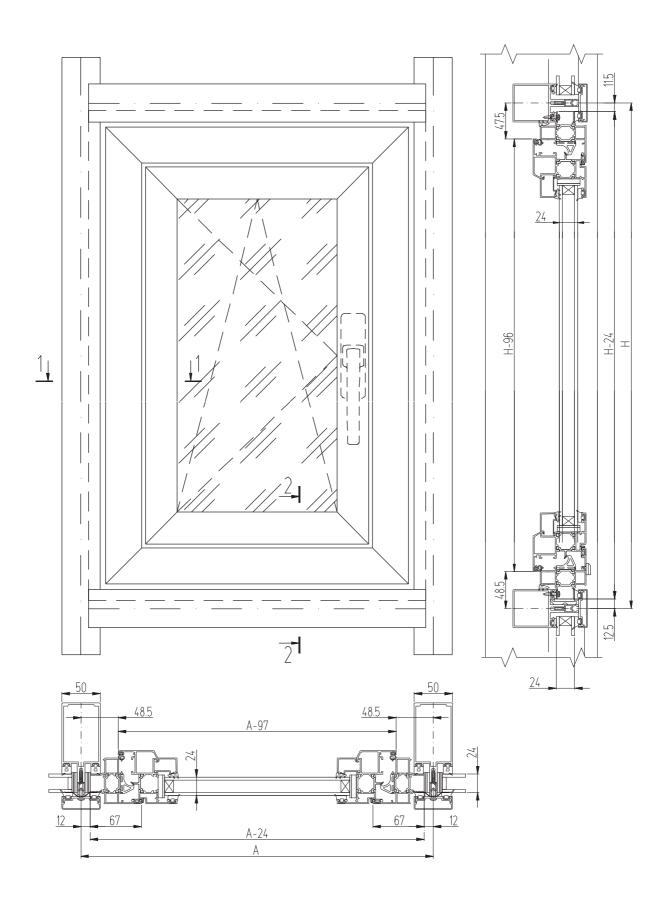
1 - 1 (для заполнения 24 мм)

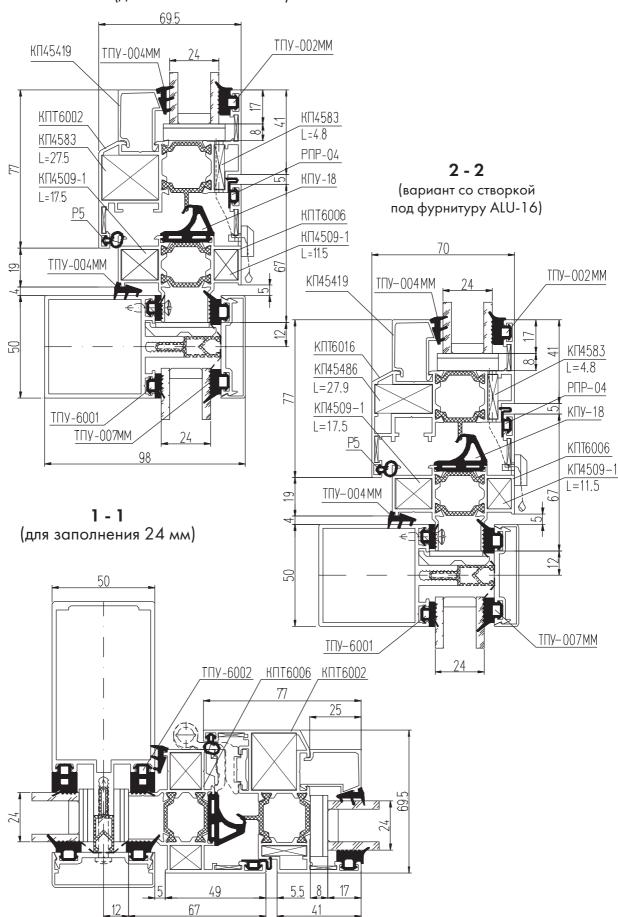


3 - 3 (для заполнения 24 мм)

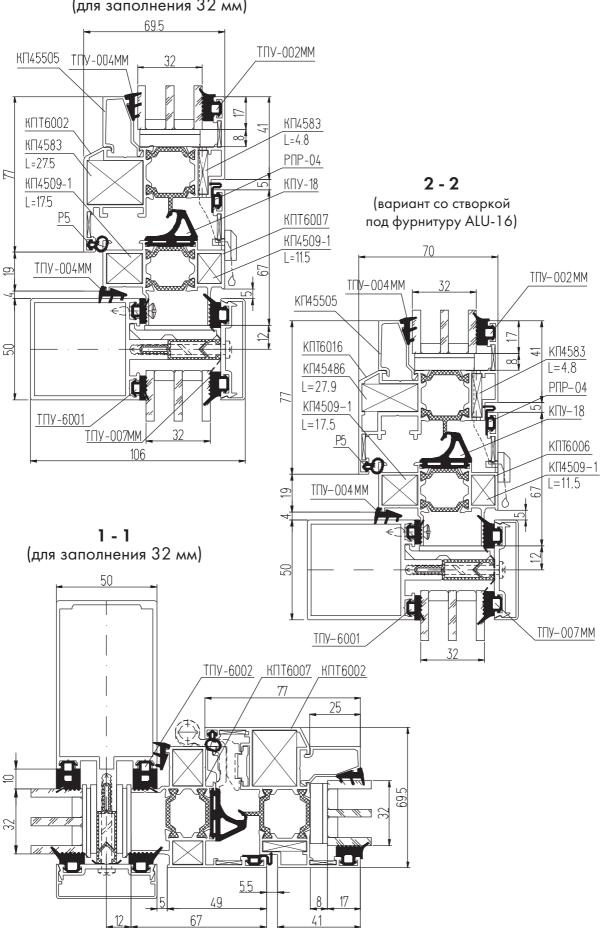


Установка "теплой" оконной створки КПТ70 с заполнением 36 мм

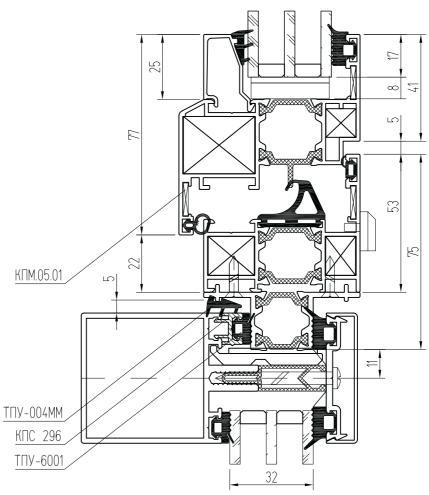




Установка "теплой" оконной створки КПТ60 с заполнением 24 или 32 мм

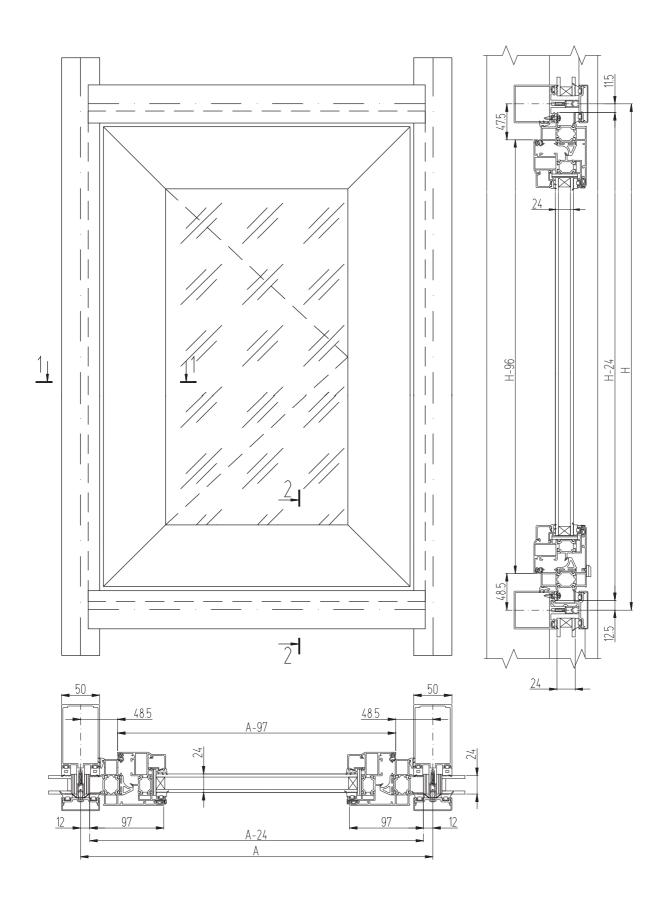


2 - 2 (для заполнения 24 мм)



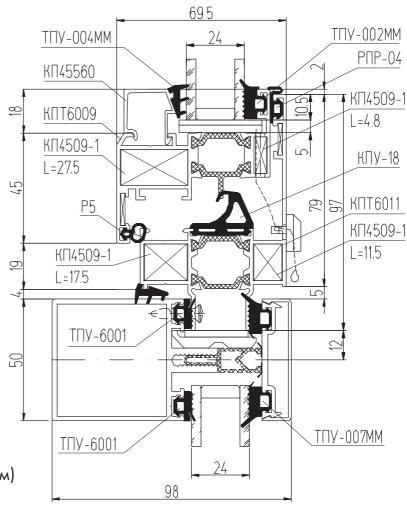
2 - 2 (для заполнения 32 мм)

2 - 2 (вариант с рамой КПТ6001 и адаптером КПТ6033-1)

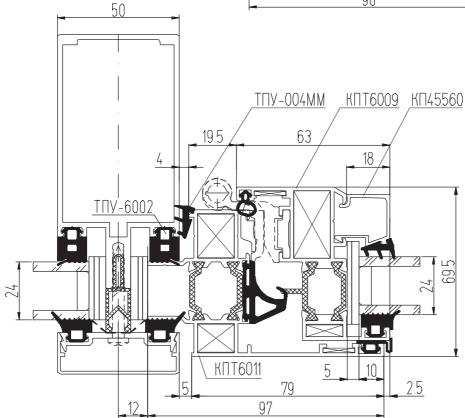

1 - 1 (вариант с рамой КПТ6001 и адаптером КПТ6033-1) КПТ6033-1 КП4583 L=27.4 КП4509-1 L=17.7 КПУ-18 КПТ6002 КП45505 ТПУ-004MM ТПУ-6002 КПС 296 69.5 _12___11 КП4509-1 КПУ-201 КП45522

L=11.5

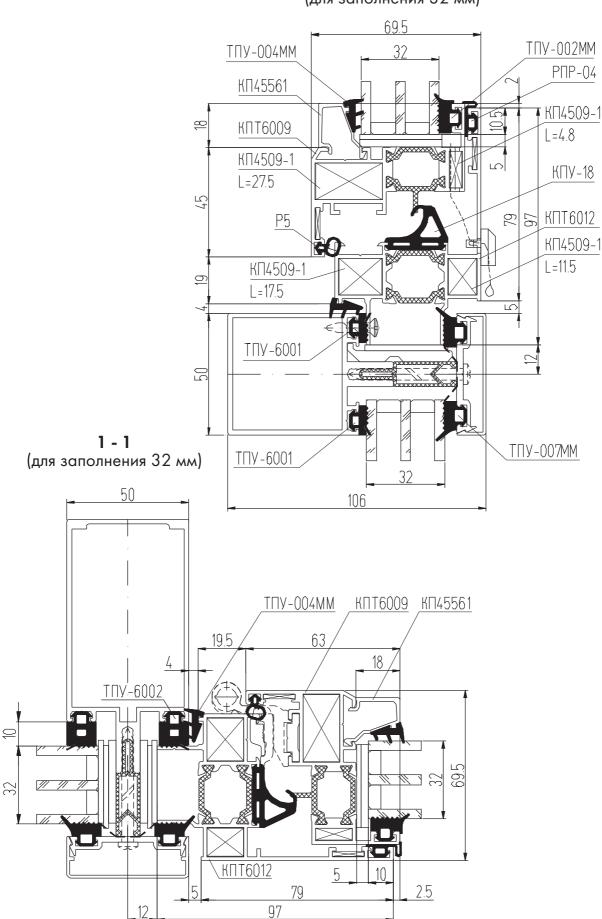
КПТ6001


L=11.5

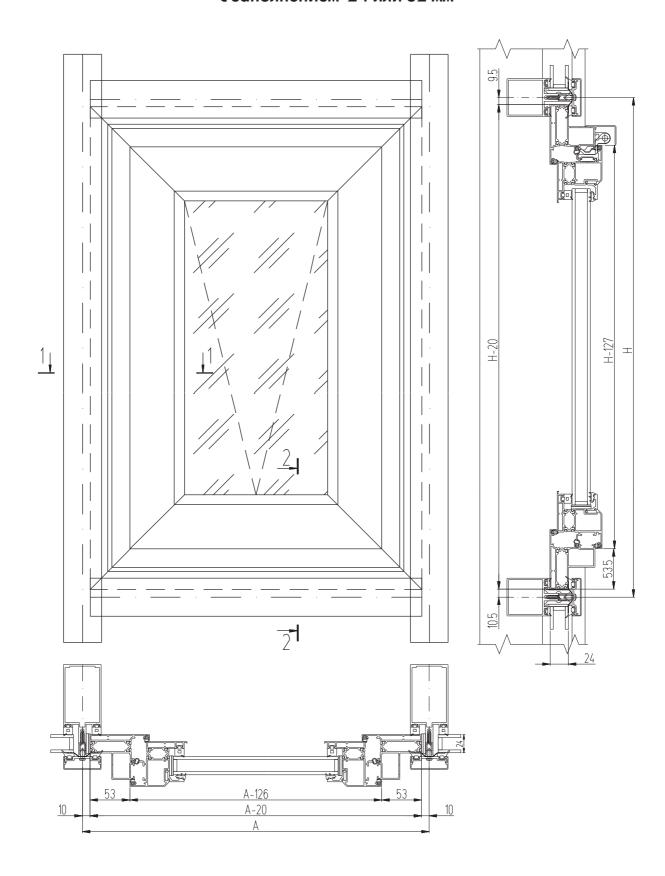
Установка "теплой" скрытой оконной створки КПТ60 с заполнением 24 или 32 мм



2 - 2 (для заполнения 24 мм)

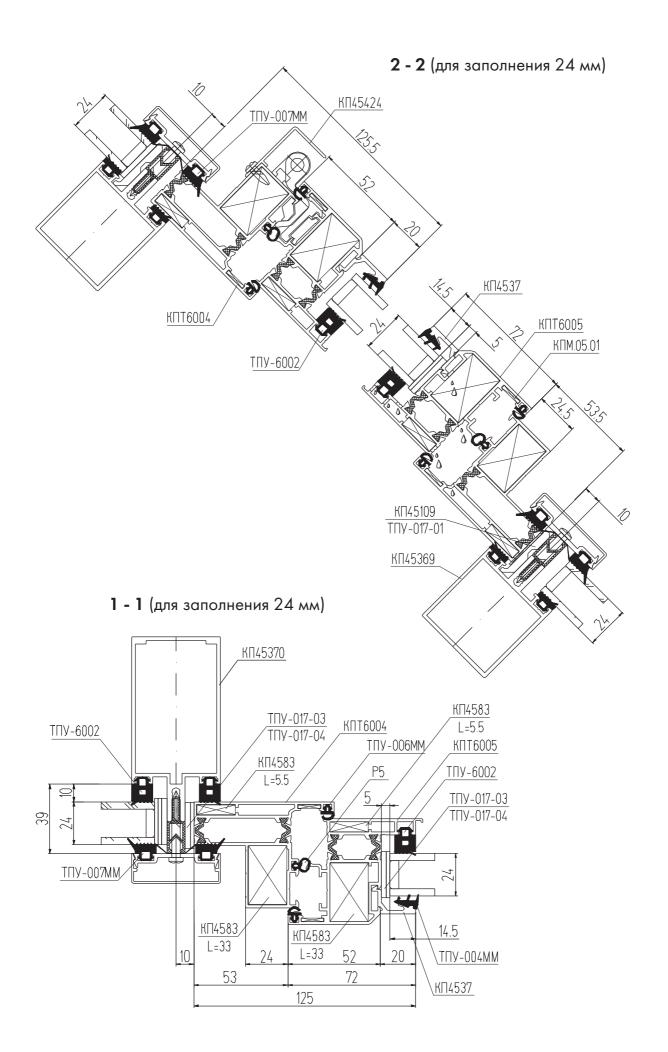


1 - 1 (для заполнения 24 мм)

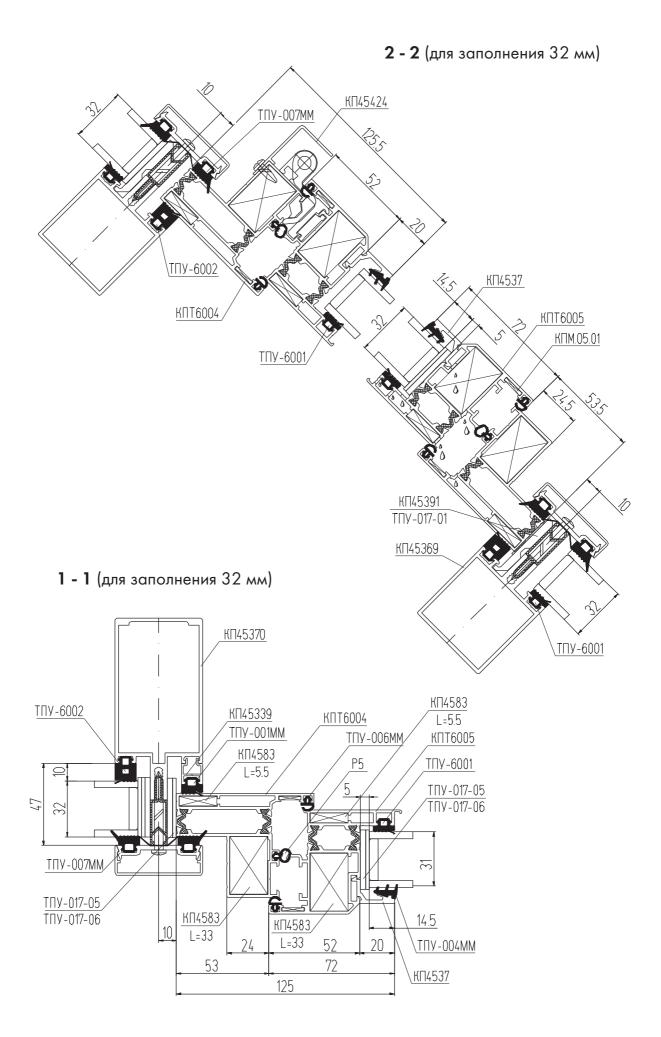


®

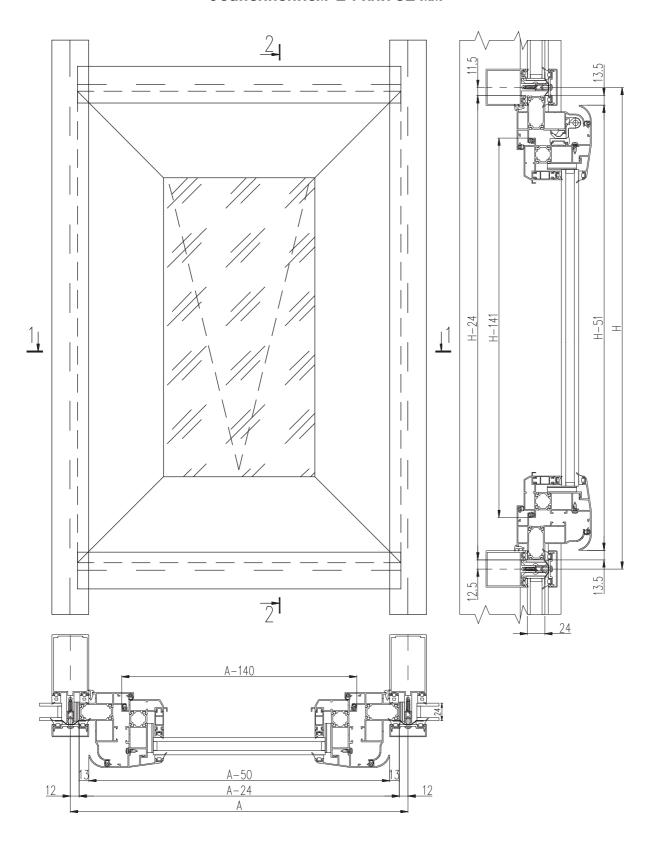
2 - 2 (для заполнения 32 мм)

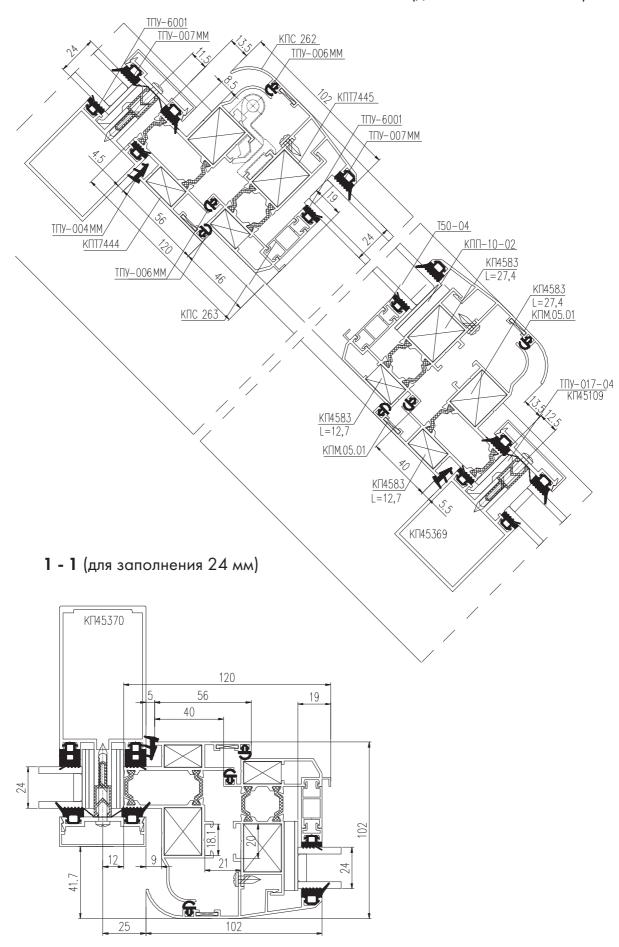


Установка "теплого" вентиляционного люка КПТ60 с заполнением 24 или 32 мм

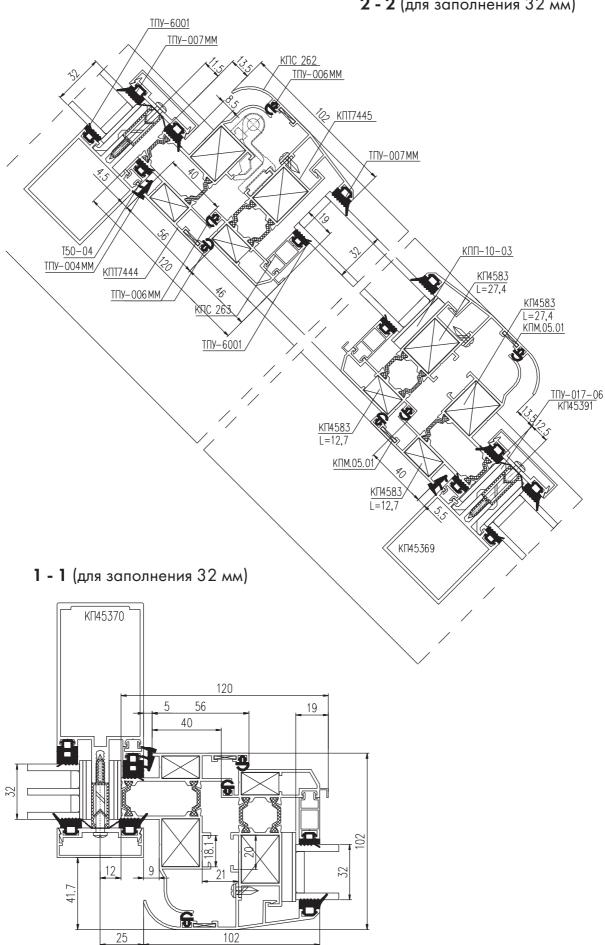


Примечание: деталировки и установка фурнитуры см. отдельный каталог "Створки с открыванием наружу, интегрированные в фасад. Вентиляционные люки".

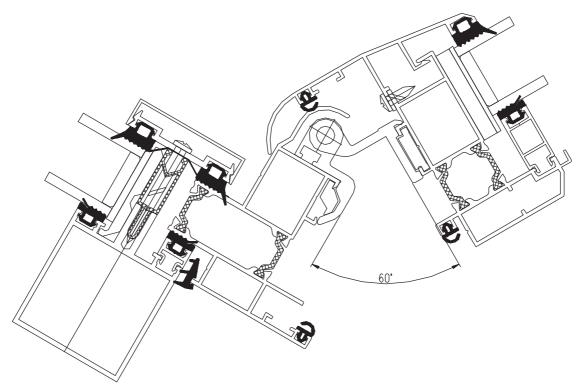


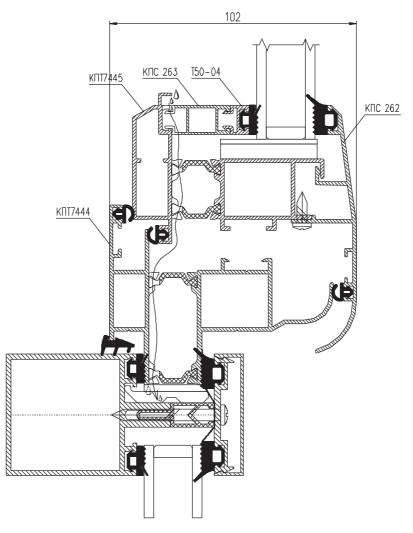

Установка "теплого" вентиляционного люка КПТ74 с заполнением 24 или 32 мм

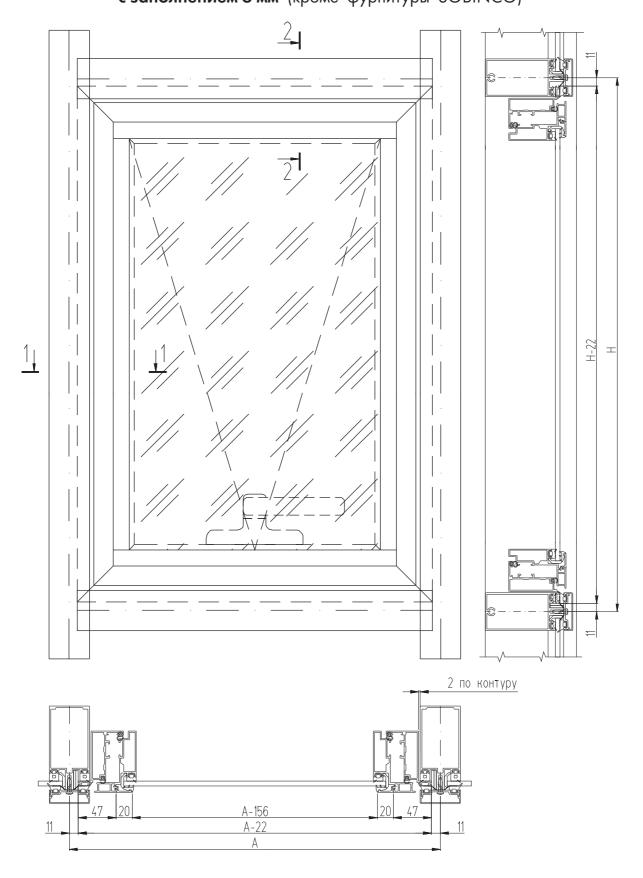
Примечание: деталировки и установка фурнитуры см. отдельный каталог "Створки с открыванием наружу, интегрированные в фасад. Вентиляционные люки".



2 - 2 (для заполнения 24 мм)



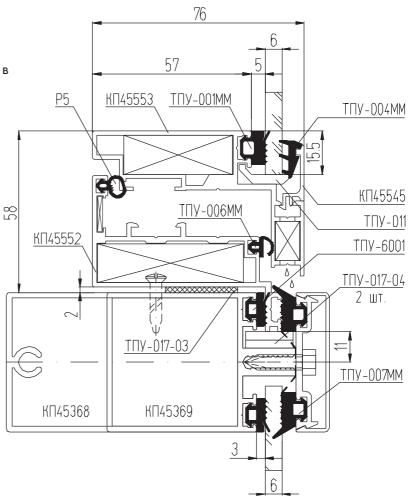

2 - 2 (для заполнения 32 мм)

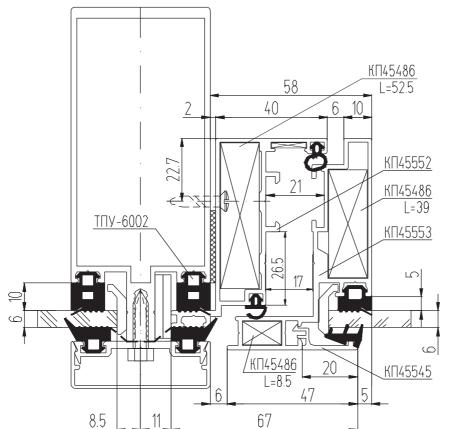

Максимальный угол открывания створки

Узел отвода конденсата

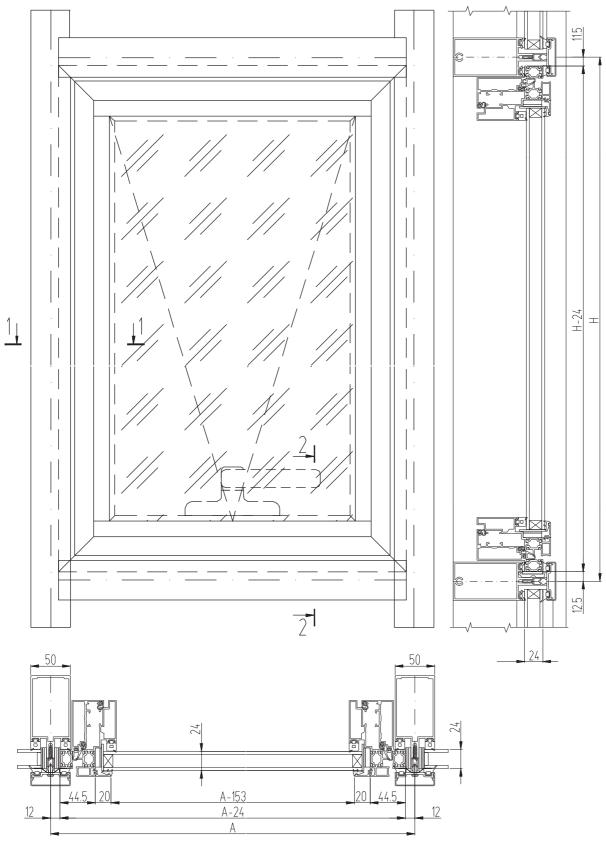
Установка "холодной" створки с открыванием наружу КП68 с заполнением 6 мм (кроме фурнитуры SOBINCO)

Примечание: деталировки и установка фурнитуры см. отдельный каталог "Створки с открыванием наружу, интегрированные в фасад. Вентиляционные люки".

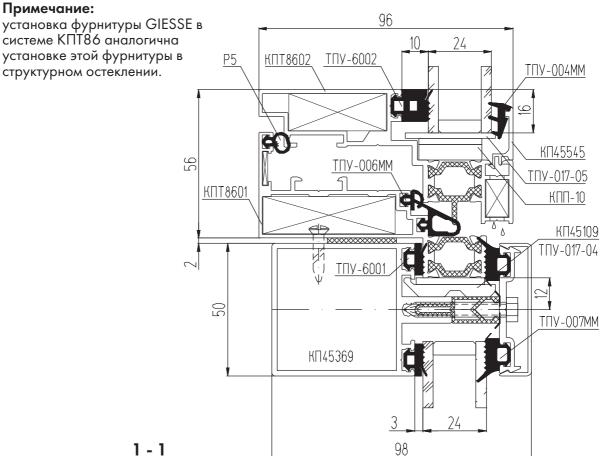




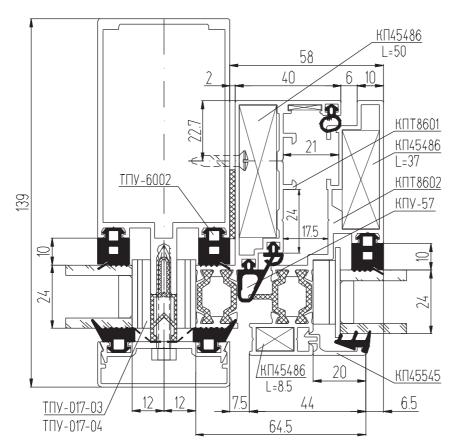
установка фурнитуры GIESSE в системе КП68 аналогична установке этой фурнитуры в структурном остеклении.


1 - 1

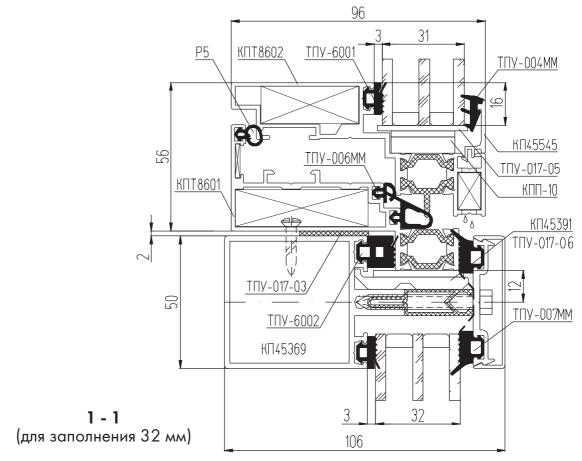
2 - 2

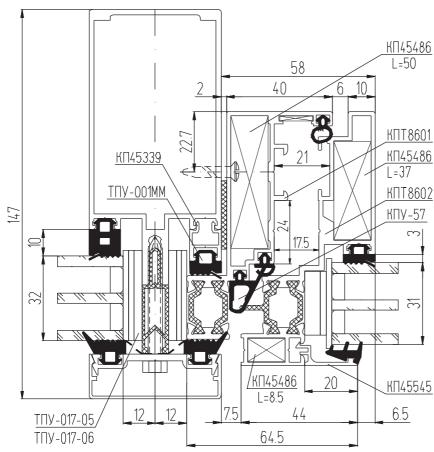


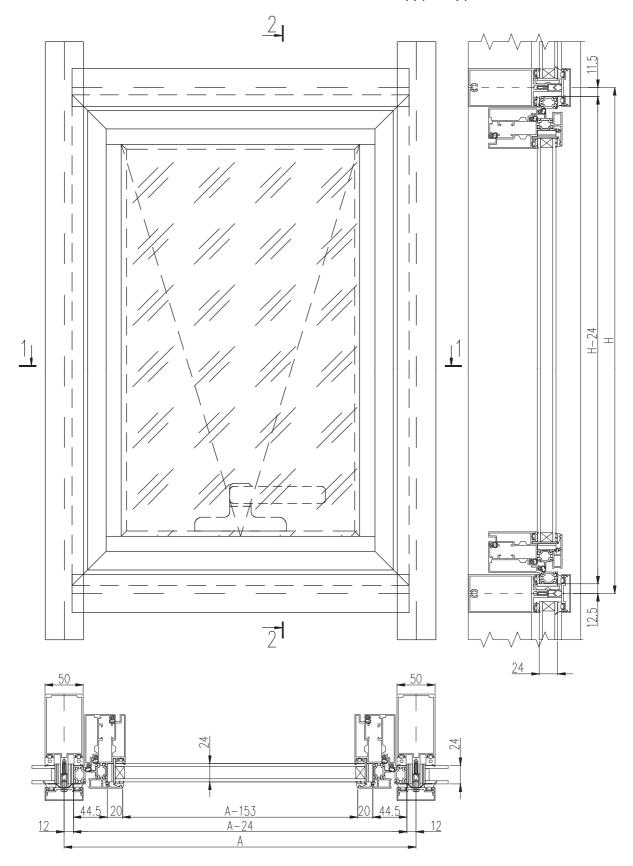
Установка "теплой" створки с открыванием наружу КПТ86 с заполнением 24 или 32 мм (кроме фурнитуры SOBINCO)



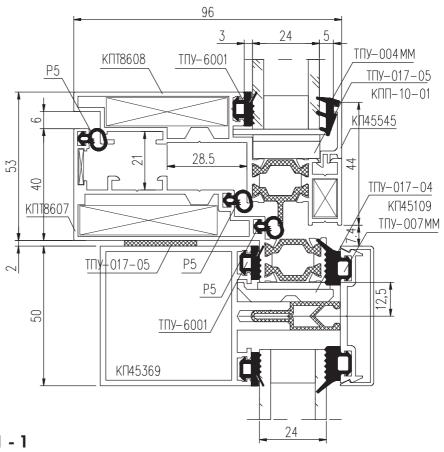
2 - 2 (для заполнения 24 мм)



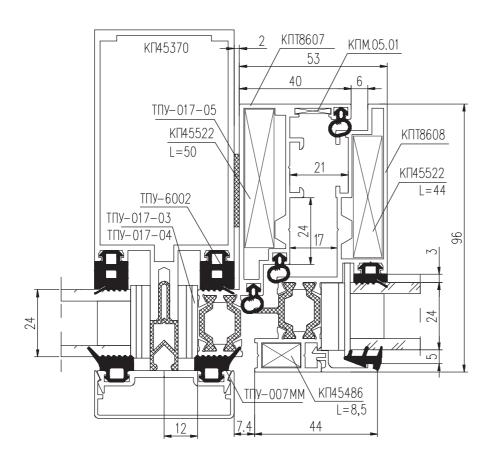

(для заполнения 24 мм)


®

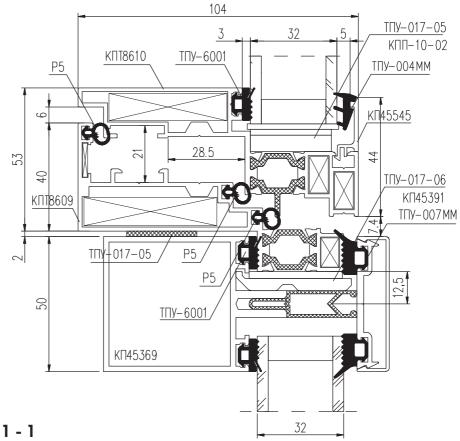
2 - 2 (для заполнения 32 мм)



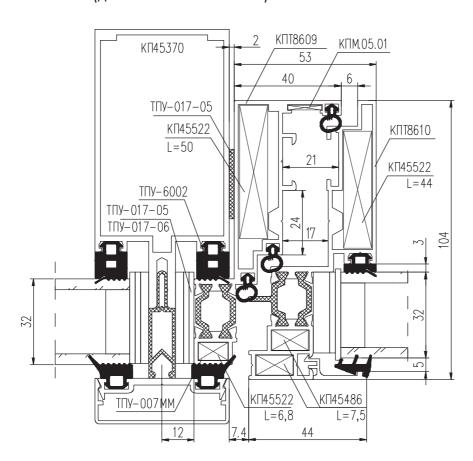
Установка "теплой" створки с открыванием наружу КПТ86 с заполнением 24 или 32 мм (в том числе фурнитура SOBINCO)

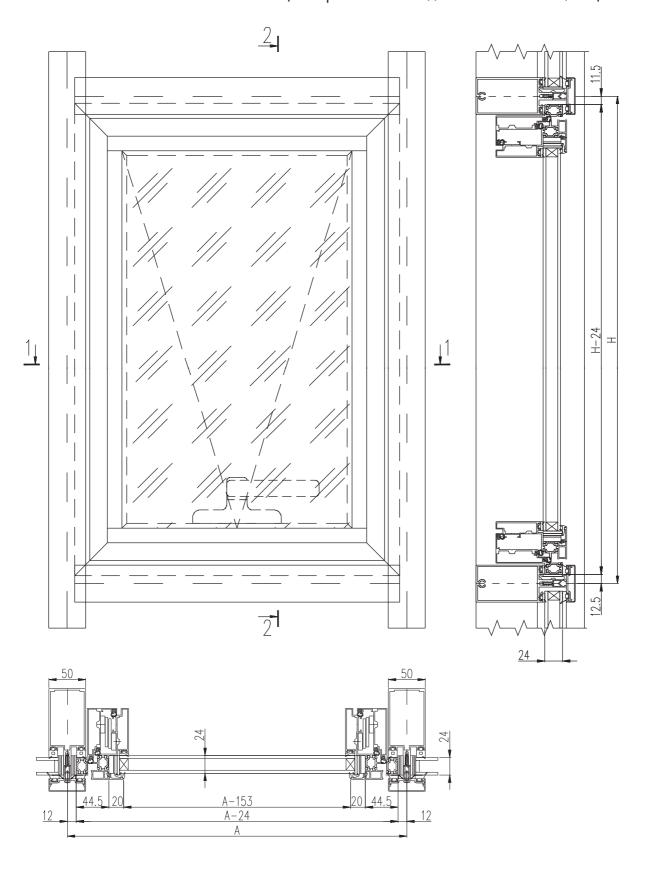


2 - 2 (для заполнения 24 мм)

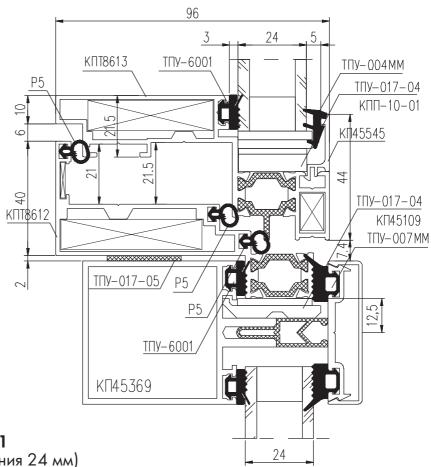


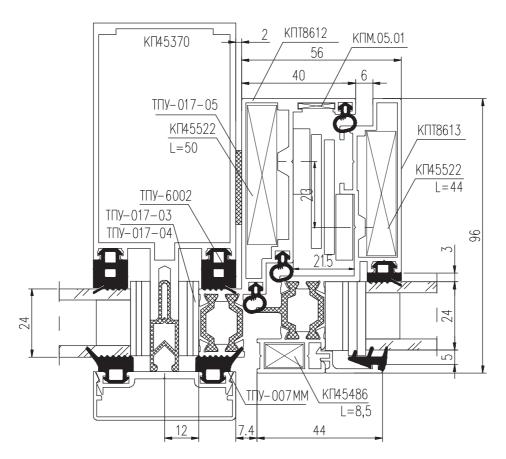
1 - 1 (для заполнения 24 мм)



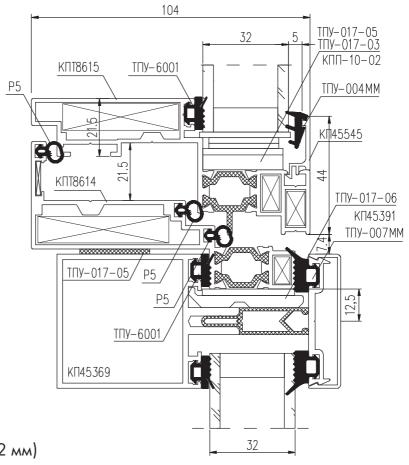

2 - 2 (для заполнения 32 мм)

(для заполнения 32 мм)

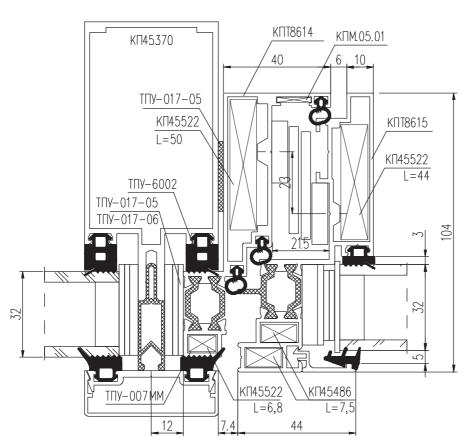

Установка "теплой" створки с открыванием наружу КПТ86 с заполнением 24 или 32 мм (с параллельно-выдвижными ножницами)



2 - 2 (для заполнения 24 мм)

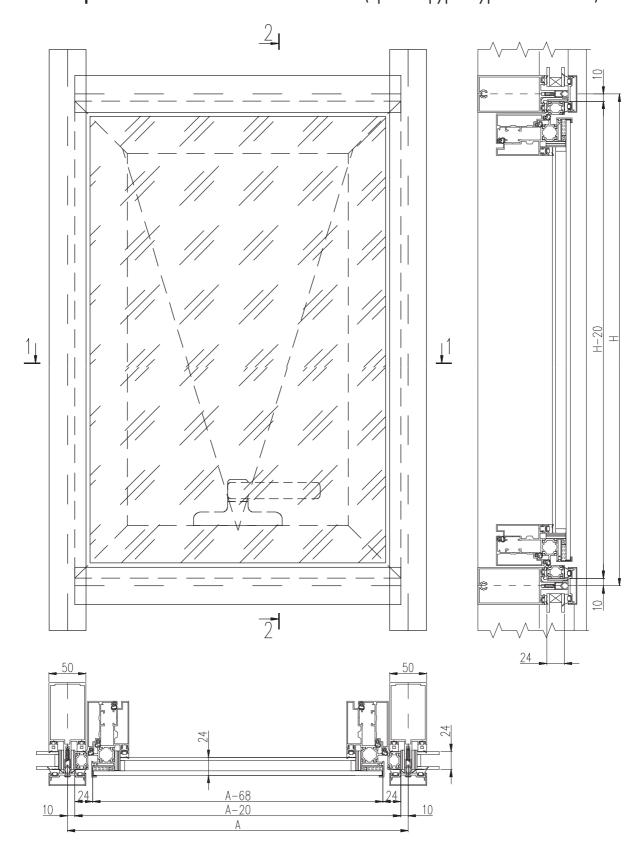


1 - 1(для заполнения 24 мм)

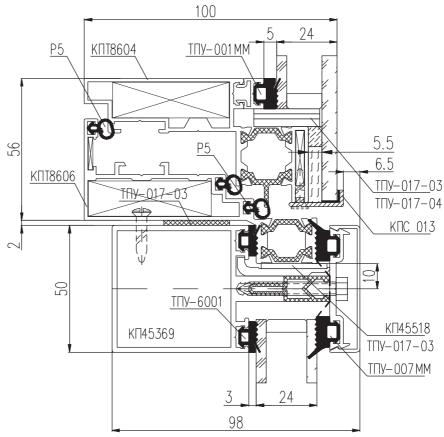


®

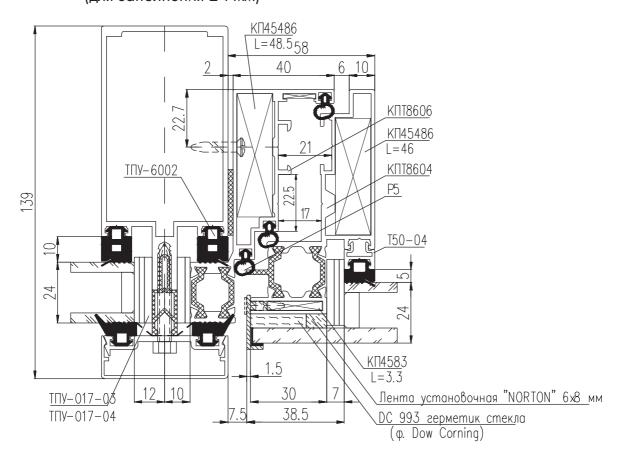
2 - 2 (для заполнения 32 мм)



1 - 1 (для заполнения 32 мм)

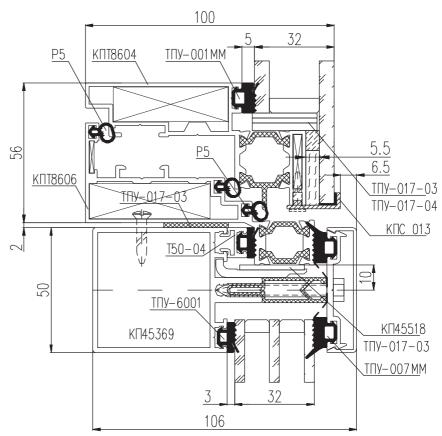

R

Интеграция структурной створки КПТ86 с открыванием наружу в витраж с заполнением 24 или 32 мм (кроме фурнитуры SOBINCO)

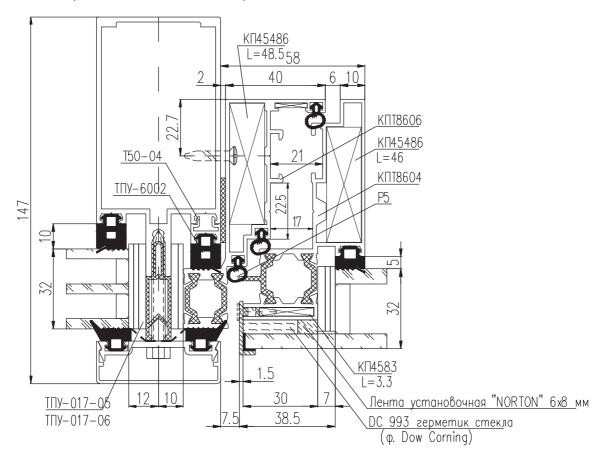


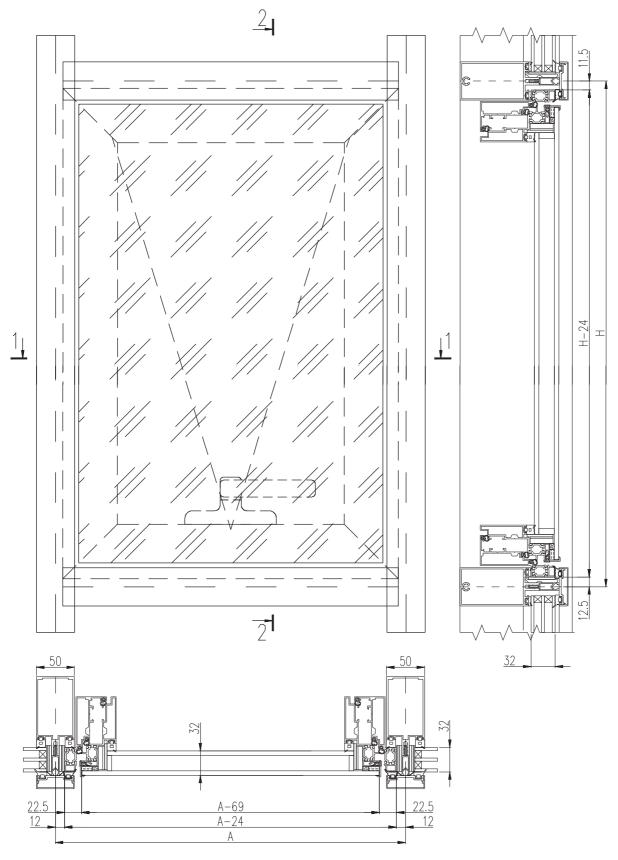
®

2 - 2 (для заполнения 24 мм)

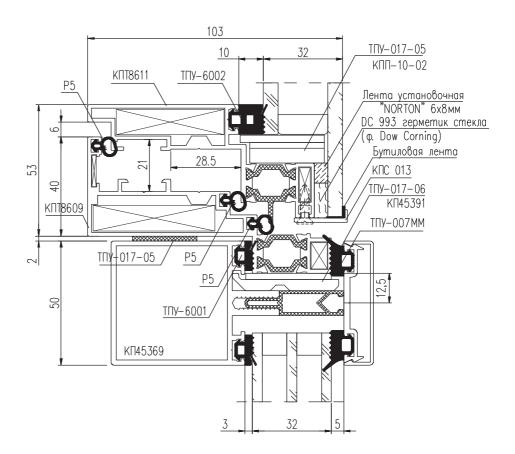


1 - 1 (для заполнения 24 мм)

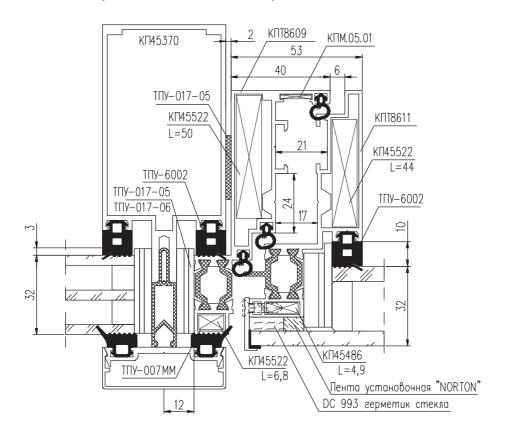


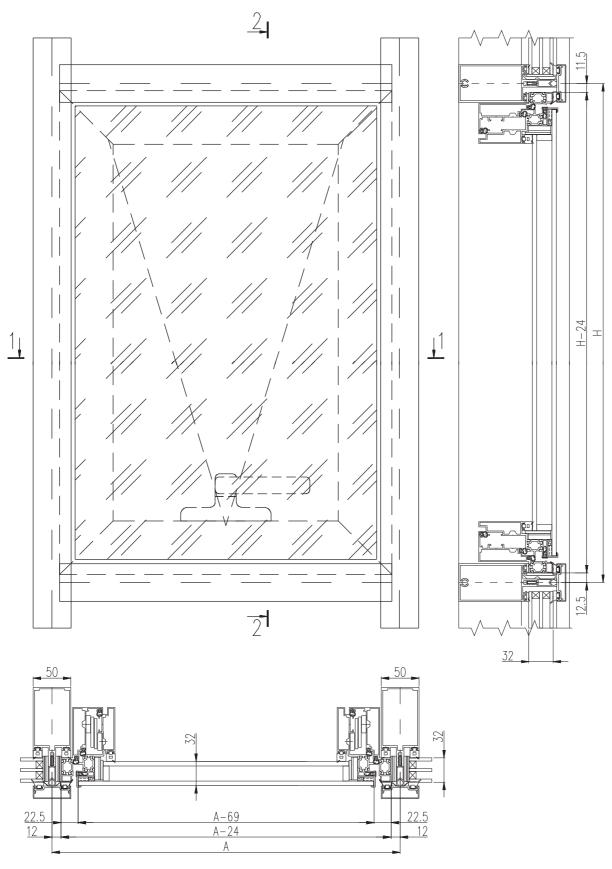

2 - 2 (для заполнения 32 мм)

1 - 1 (для заполнения 32 мм)

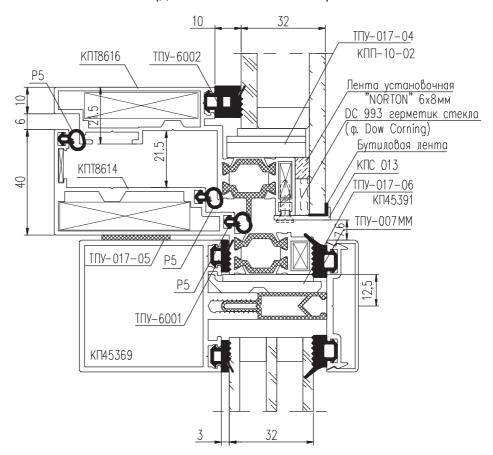


Интеграция структурной створки КПТ86 с открыванием наружу в витраж с заполнением 32 мм (в том числе фурнитура SOBINCO)

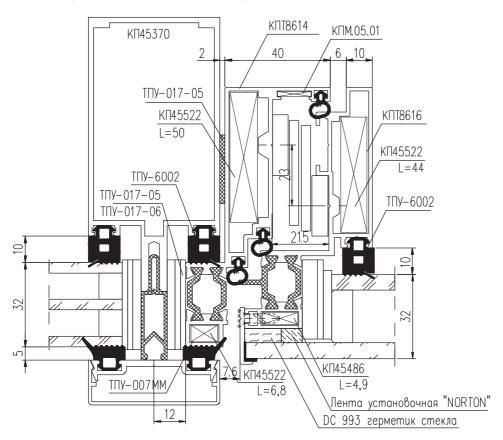



2 - 2 (для заполнения 32 мм)

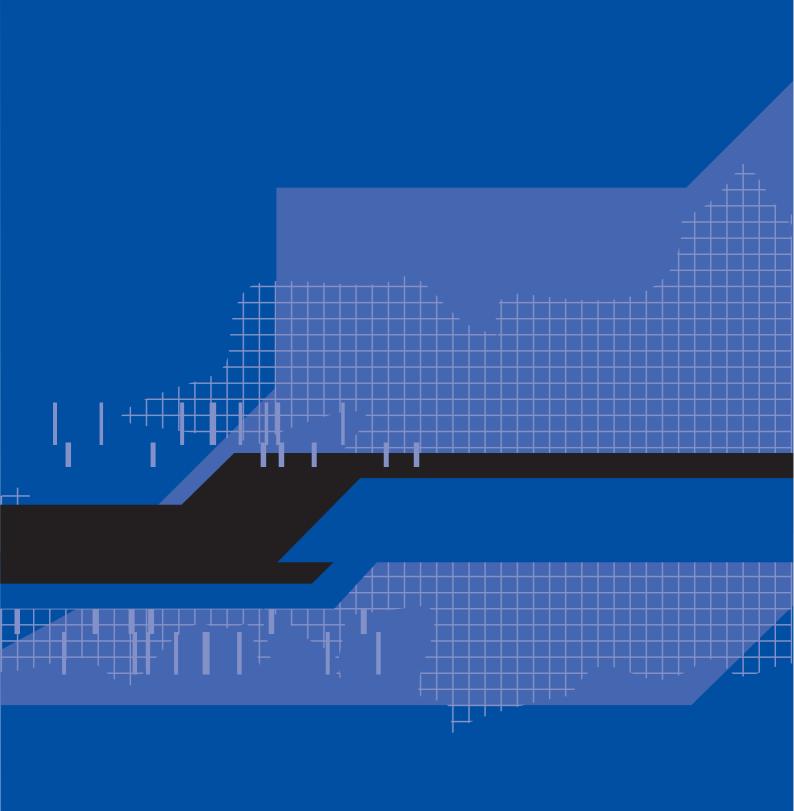
1 - 1(для заполнения 32 мм)

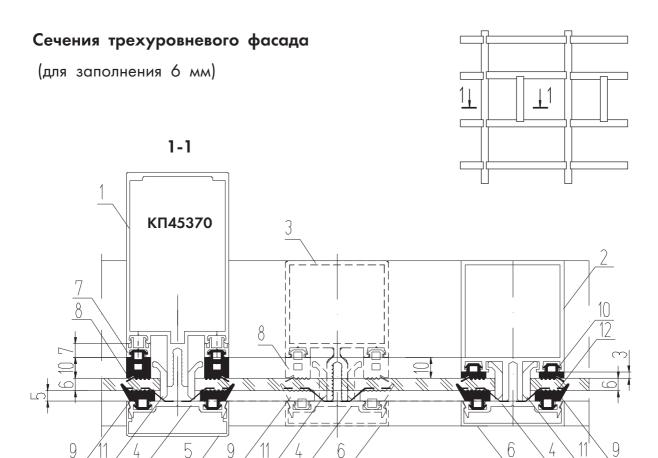


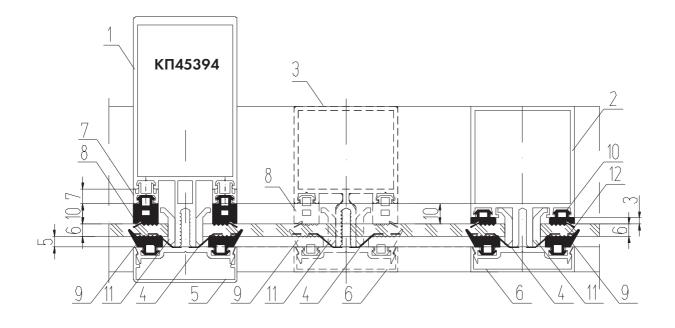
Интеграция структурной створки КПТ86 с открыванием наружу в витраж с заполнением 32 мм (с параллельно-выдвижными ножницами)

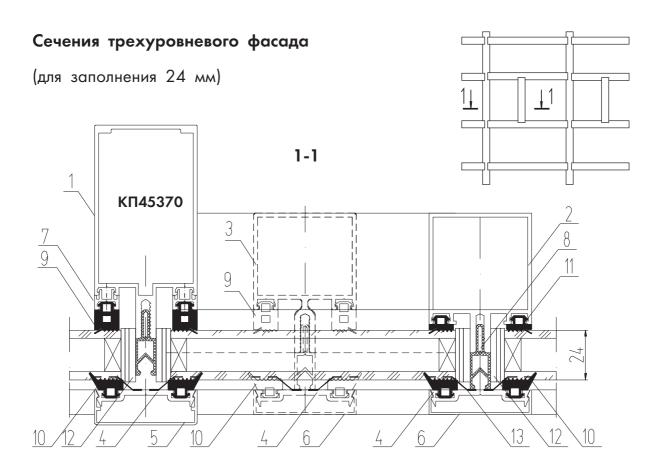


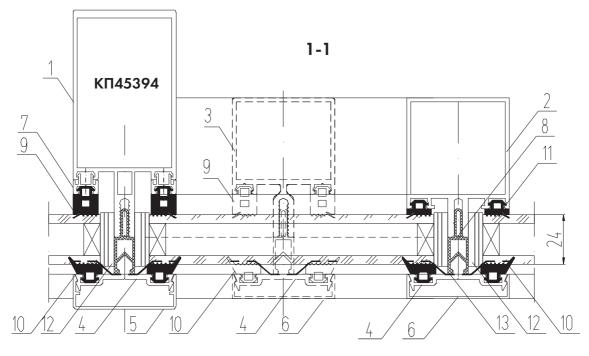
2 - 2 (для заполнения 32 мм)


1 - 1 (для заполнения 32 мм)



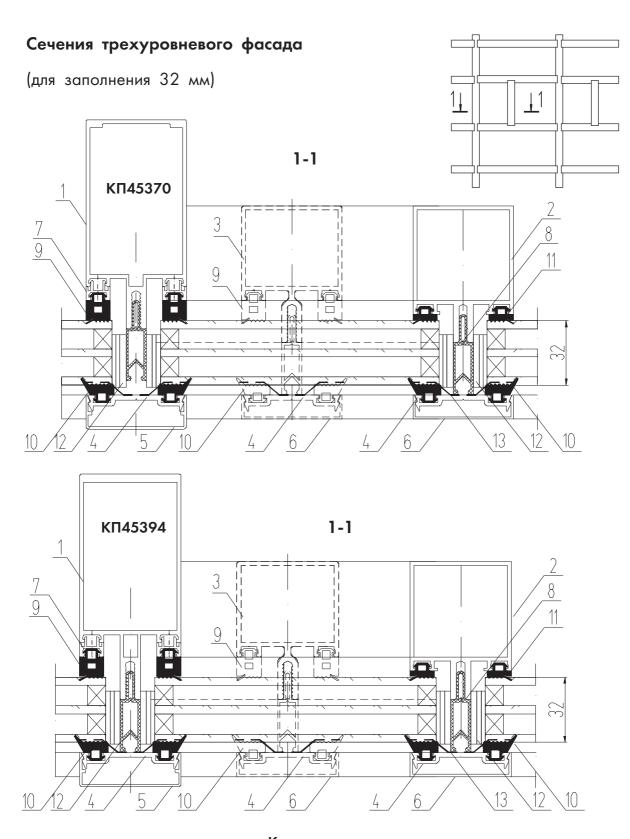





Комплектация:

- 1. Стойка КП45370 (КП45394)
- 2. Ригель КП45369
- 3. Ригель КП45395
- 4. Держатель КП45313-2
- Крышка КП45310
- Крышка КП45309

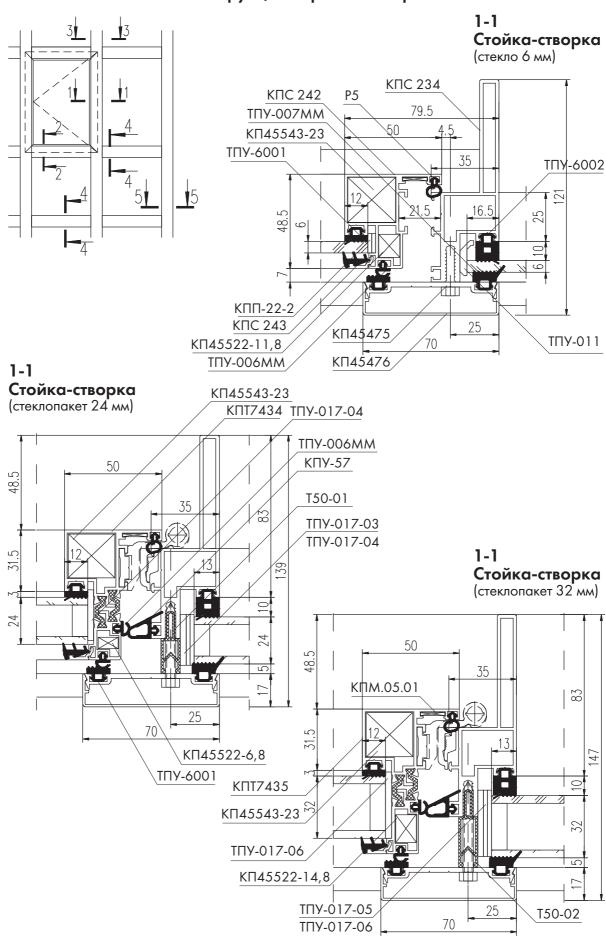
- 7. Штапик КП45396
- 8. Уплотнитель ТПУ-6002ММ
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6001
- 11. Подкладка ТПУ-011
- 12. Герлен ЛТ 50х1,5

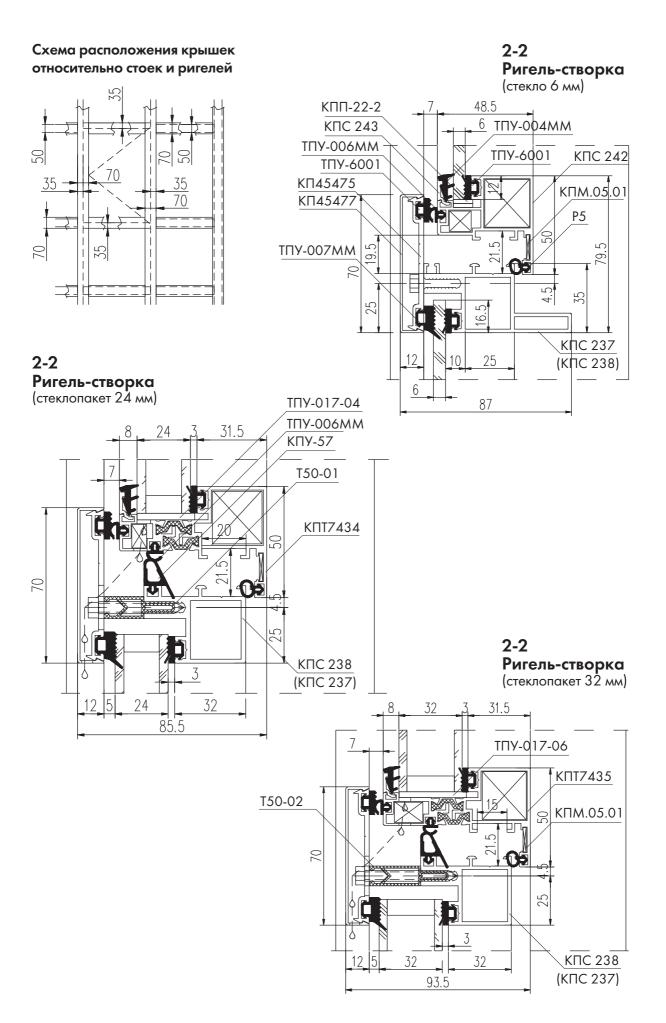


Комплектация:

- 1. Стойка КП45370 (КП45394)
- 2. Ригель КП45369
- 3. Ригель КП45395
- 4. Держатель КП45313-2
- 5. Крышка KП45310
- 6. Крышка КП45309
- 7. Штапик КП45396

- 8. Термовставка Т50-01
- 9. Уплотнитель ТПУ-6002ММ
- 10. Уплотнитель ТПУ-007ММ
- 11. Уплотнитель ТПУ-6001
- 12. Подкладка ТПУ-017-03 2 шт. ТПУ-017-04
- 13. Герлен ЛТ 50х1,5

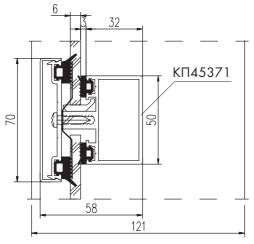


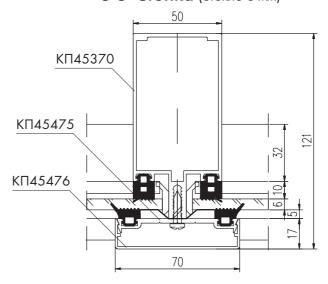

Комплектация:

- 1. Стойка КП45370 (КП45394)
- 2. Ригель КП45369
- 3. Ригель КП45395
- 4. Держатель КП45313-2 5. Крышка КП45310
- Крышка КП45309
- 7. Штапик КП45396

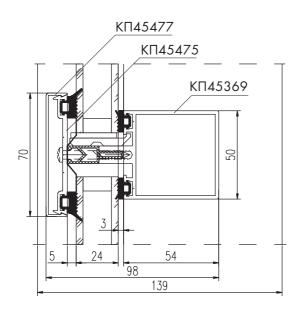
- 8. Термовставка Т50-02
- 9. Уплотнитель ТПУ-6002ММ
- 10. Уплотнитель ТПУ-007ММ
- 11. Уплотнитель ТПУ-6001
- 12. Подкладка ТПУ-017-03 2 шт. ТПУ-017-04
- 13. Герлен ЛТ 50х1,5

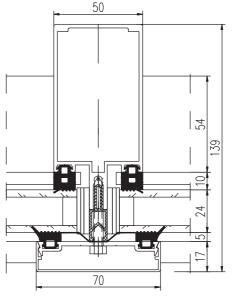
Конструкция скрытой створки

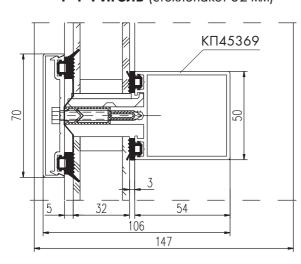


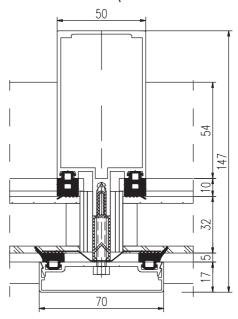

Стойка-штапик (стекло 6 мм) **ΚΠС 234** Спейсер 24 ТПУ-011 ТПУ-017-03 83 КП45474 25 ТПУ-6002 <u>ТПУ-007ММ</u> 3-3 16.5 Стойка-штапик (стеклопакет 24 мм) 70 Спейсер 32 T50-01 КП45476 КП45475 ТПУ-017-03 Герлен ЛТ 70x1,5 45 83 39 3-3 Стойка-штапик (стеклопакет 32 мм) T50-02 13 Спейсер 32 83 45 ТПУ-017-05 70 КПП-22-2 Герлен ЛТ 70х1,5 КПП-22-3 147 Герлен ЛТ 70x1,5 5 ТПУ-017-03 70 ТПУ-017-04

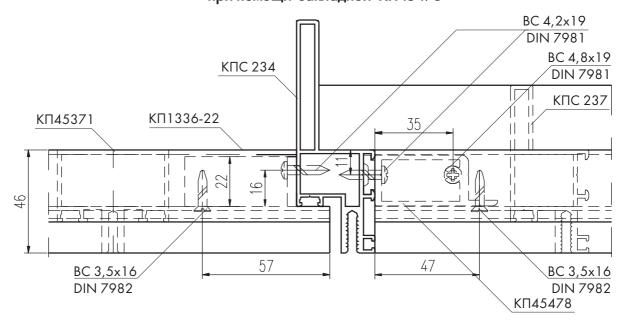
3-3

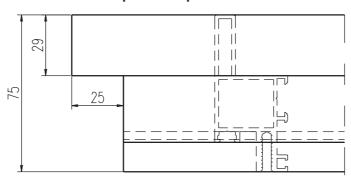

4-4 Ригель (стекло 6 мм)

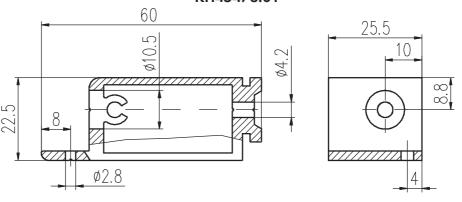

5-5 Стойка (стекло 6 мм)

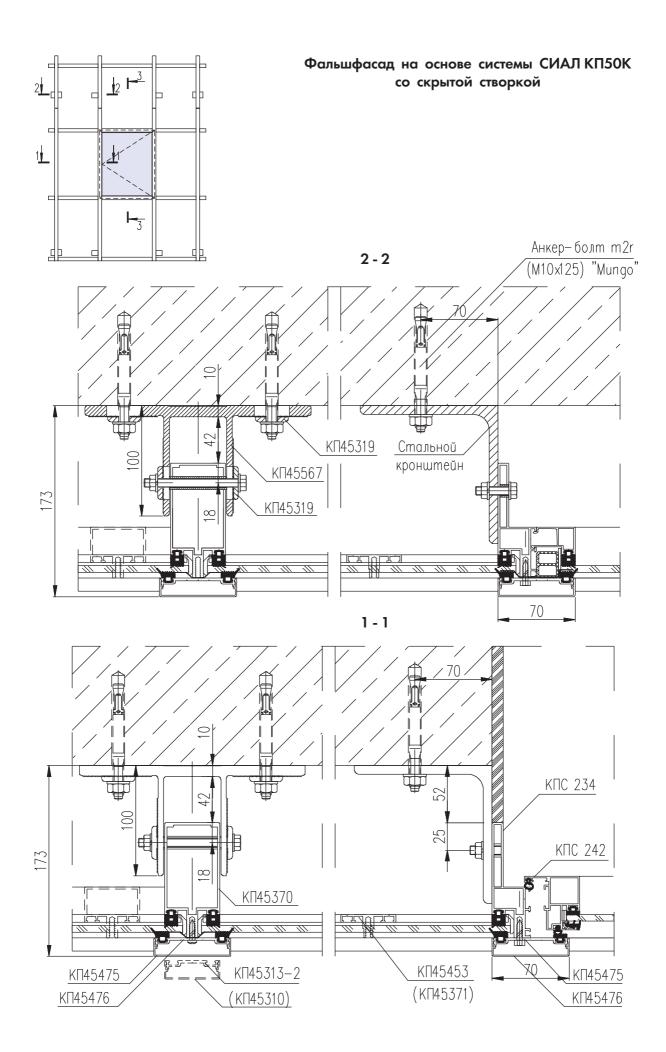

4-4 Ригель (стеклопакет 24 мм)

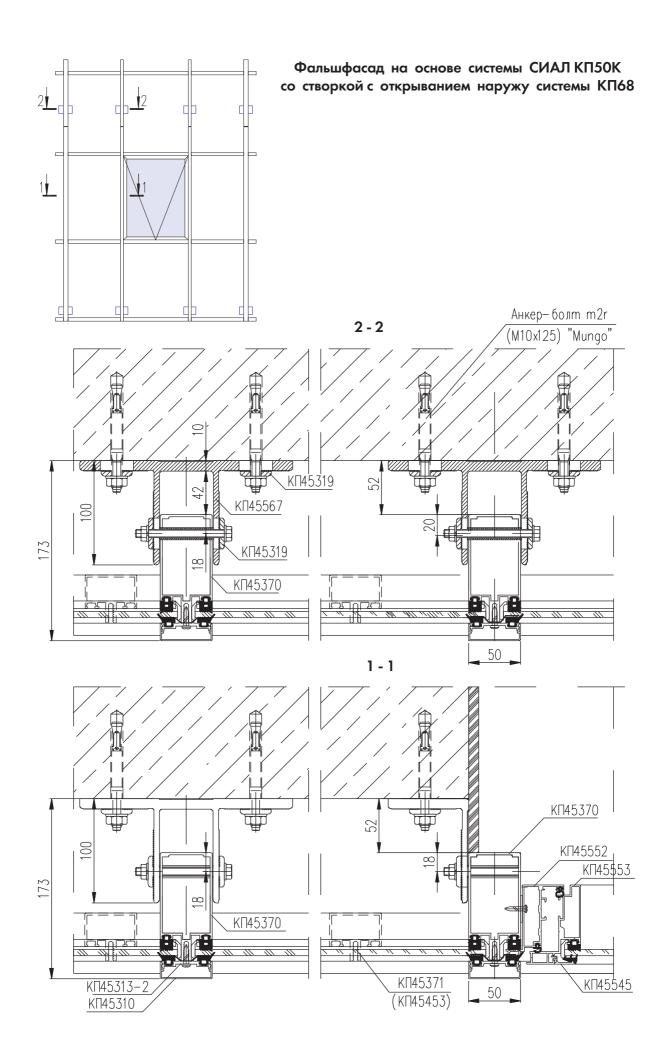

5-5 Стойка (стеклопакет 24 мм)

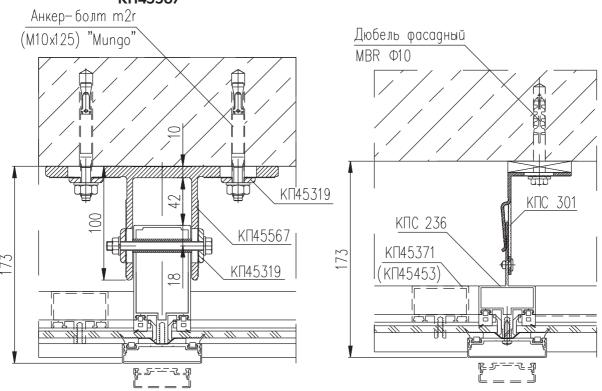

4-4 Ригель (стеклопакет 32 мм)


5-5 Стойка (стеклопакет 32 мм)

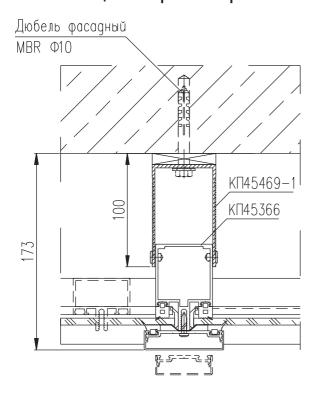

Крепление ригеля КПС 237 к стойке КПС 234 при помощи закладной КП45478

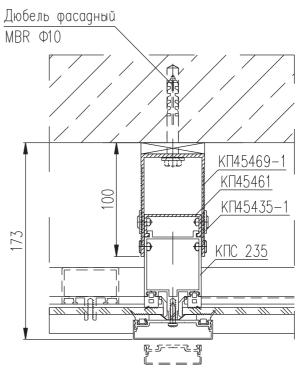

Обработка ригеля КПС 237

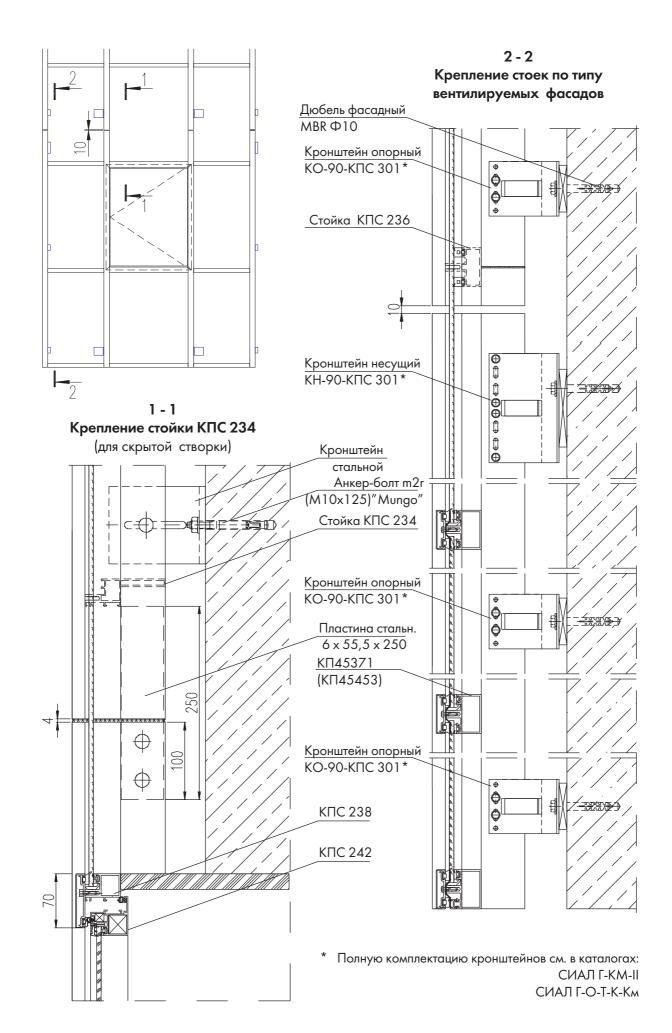

Обработка закладной КП45478.01



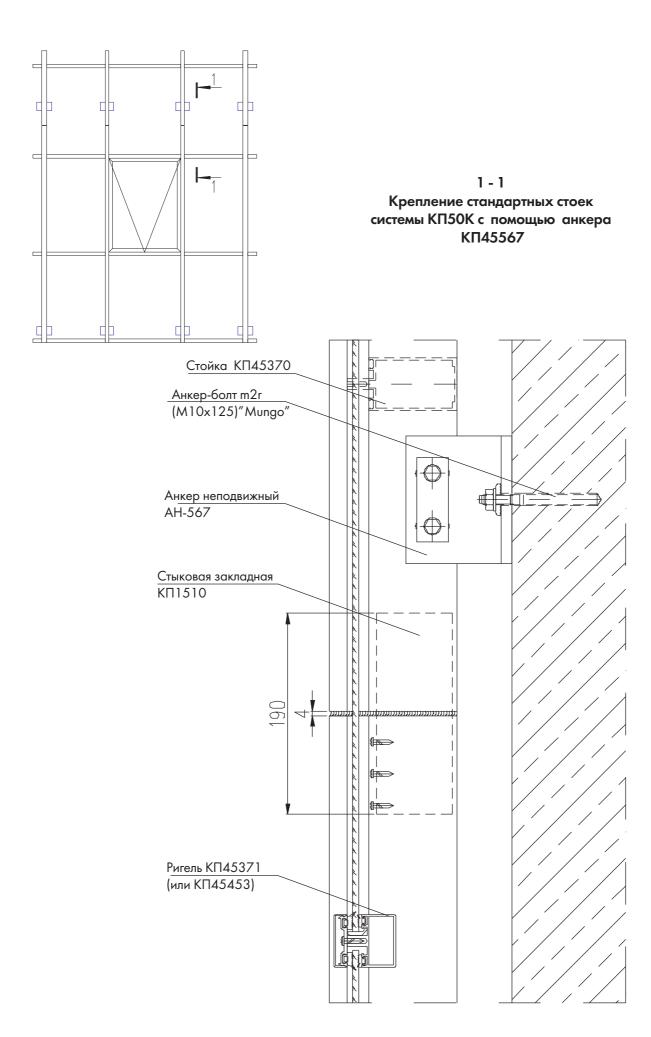
Варианты крепления промежуточной стойки

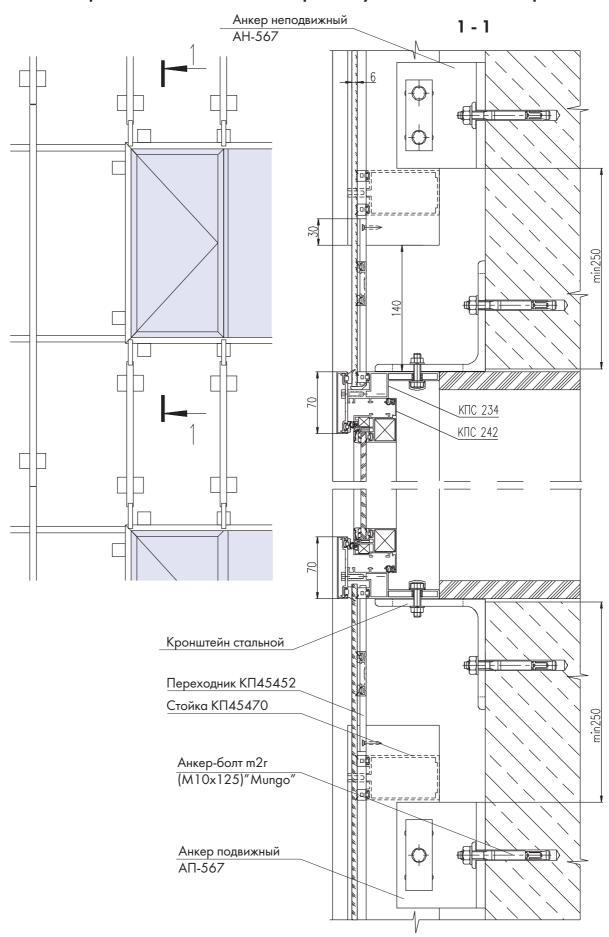

Стандартные стойки системы КП50К с помощью алюминиевого анкера КП45567

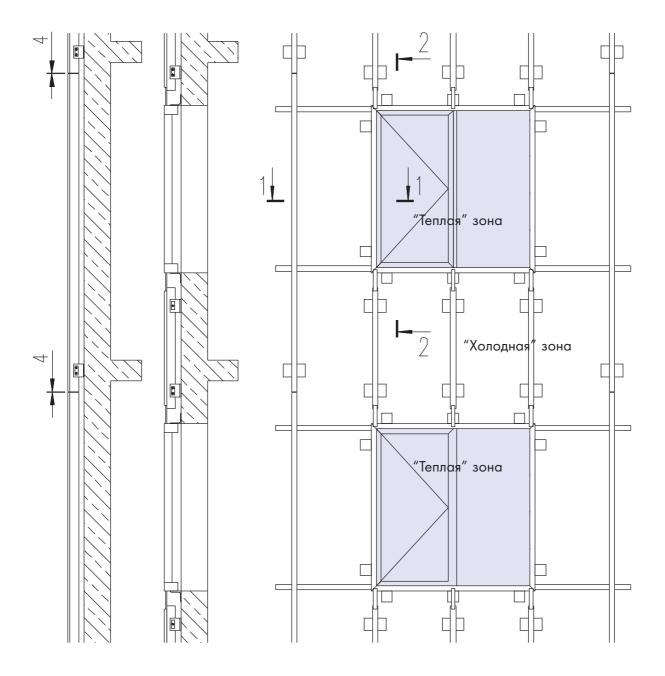

Стойка КПС 236 с помощью Г-образного кронштейна


Стандартные стойки системы КП50К с помощью П-образного кронштейна

Стойка КПС 235 с помощью П-образного кронштейна и салазки КП45461







Фальшфасад, выполненный по принципу тепло-холодного фасада

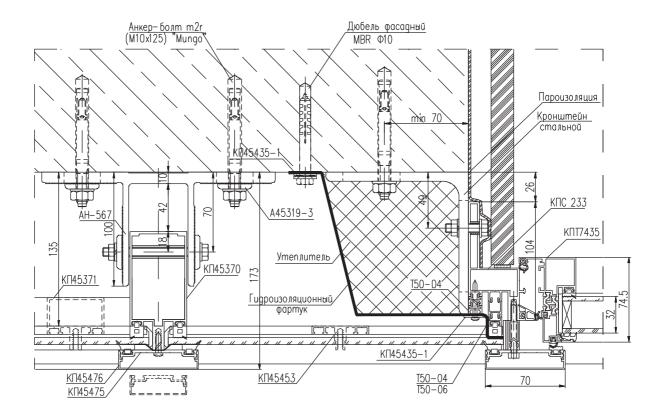
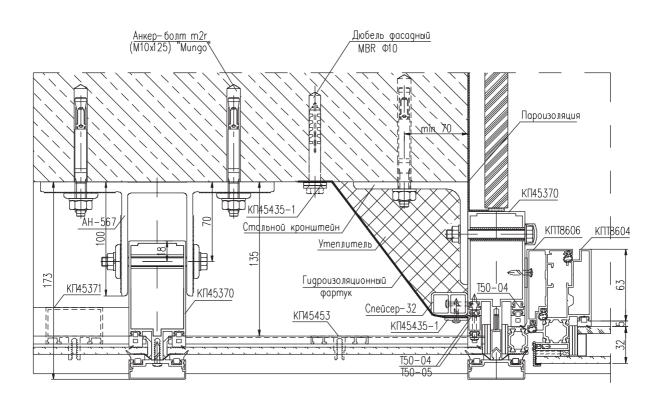
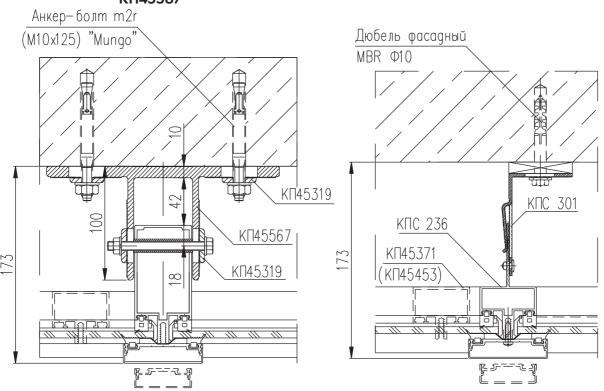


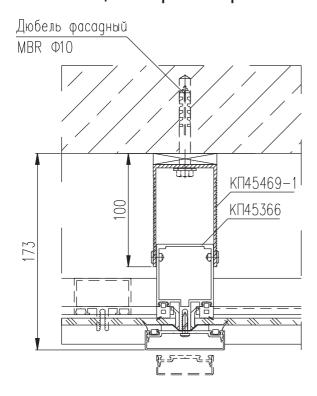
Схема выполнения тепло-холодного фасада системы СИАЛ КП50К ТХ



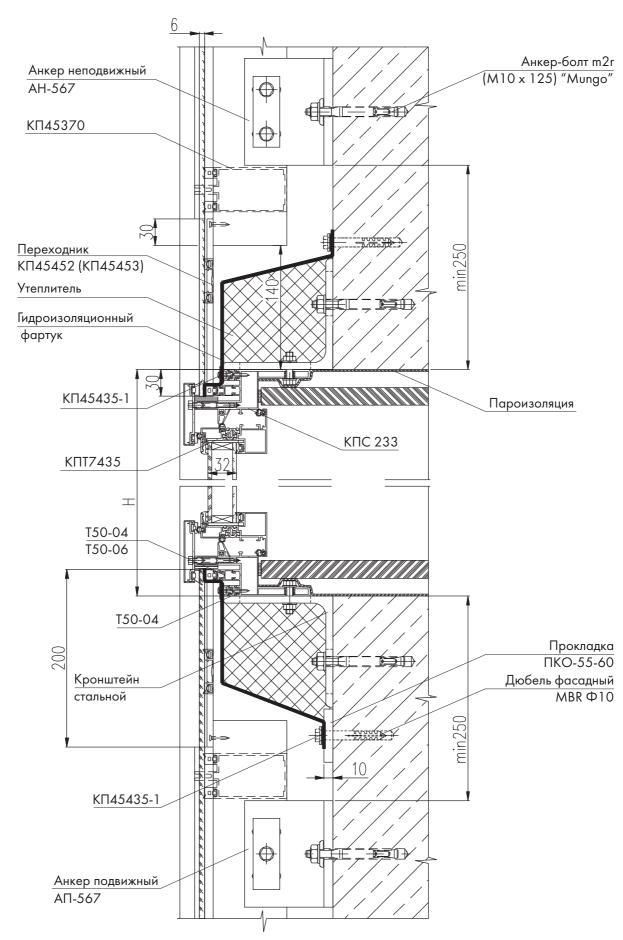
1 - 1 Тепло-холодный фасад на базе КП50К со скрытой створкой


1 - 1 Тепло-холодный фасад на базе КП50К со структурной створкой с открыванием наружу КПТ86

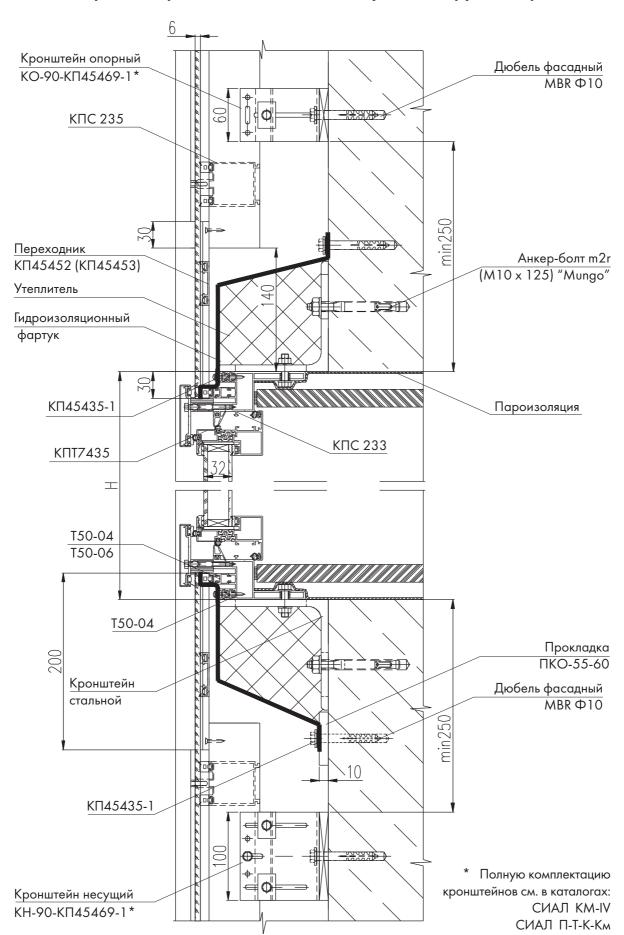
Варианты крепления стойки "холодной" зоны


Стандартные стойки системы КП50К с помощью алюминиевого анкера КП45567

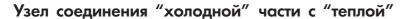

Стойка КПС 236 с помощью Г-образного кронштейна

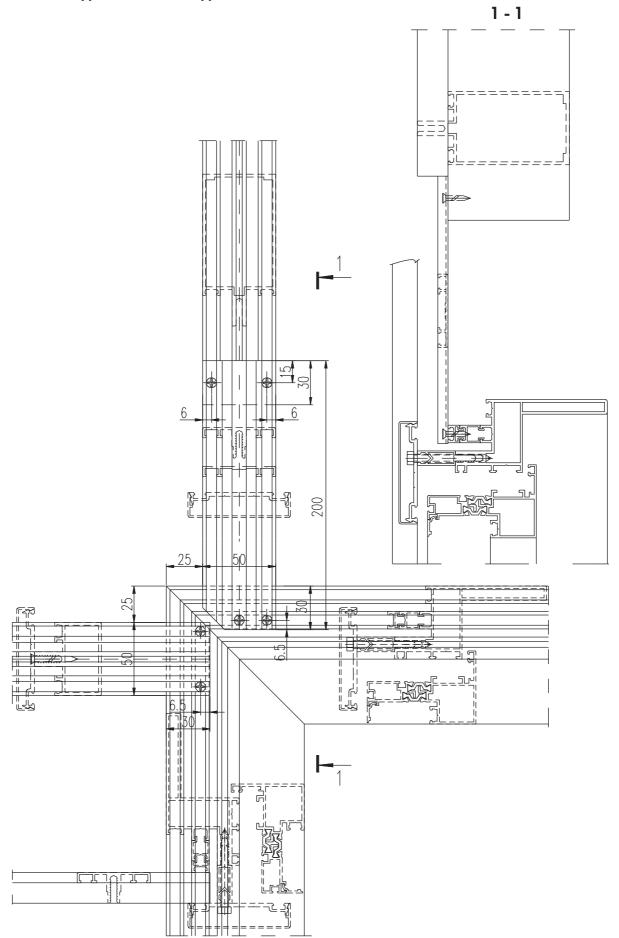

Стандартные стойки системы КП50К с помощью П-образного кронштейна

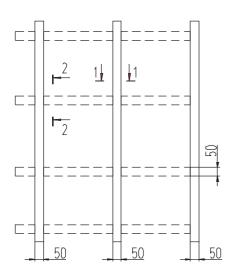
Стойка КПС 235 с помощью П-образного кронштейна и салазки КП45461

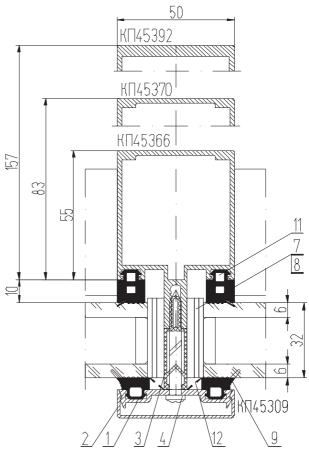


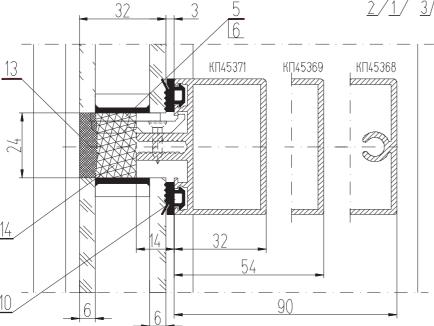
2 - 2 Вариант с креплением стоек алюминиевыми анкерами КП45567




2 - 2 Вариант с креплением стоек по типу вентилируемых фасадов






Схема выполнения полуструктурного остекления

с видимыми стойками

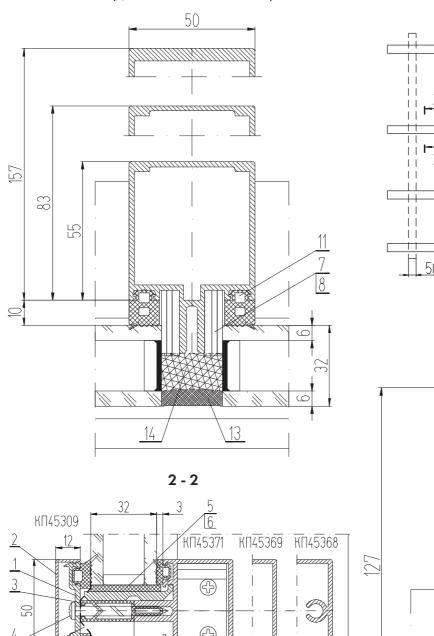
1-1 (для заполнения 32 мм)

2 - 2

КП45315 67 КП45374 100

50

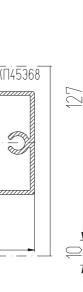
КП45310

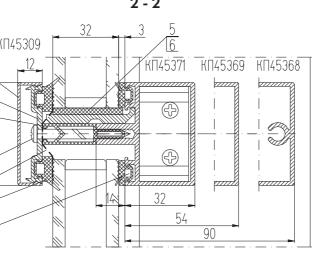

КП45314


Комплектация:

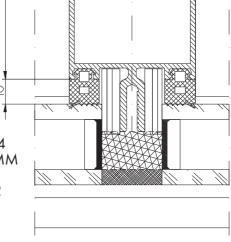
- 1. Держатель КП45313-2
- 2. Крышка
- 3. Термовставка Т50-02
- 4. Винт D7981 ZN PZ 4,8x45
- Подкладка КП45109
- Подкладка ТПУ-017-04
- 7. Подкладка ТПУ-017-05
- 8. Подкладка TПУ-01*7-*06
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6001
- 11. Уплотнитель ТПУ-6002
- 12. Герлен ЛТ 50 x1,5 13. DOW CORNING 791
- 14. Вилатерм

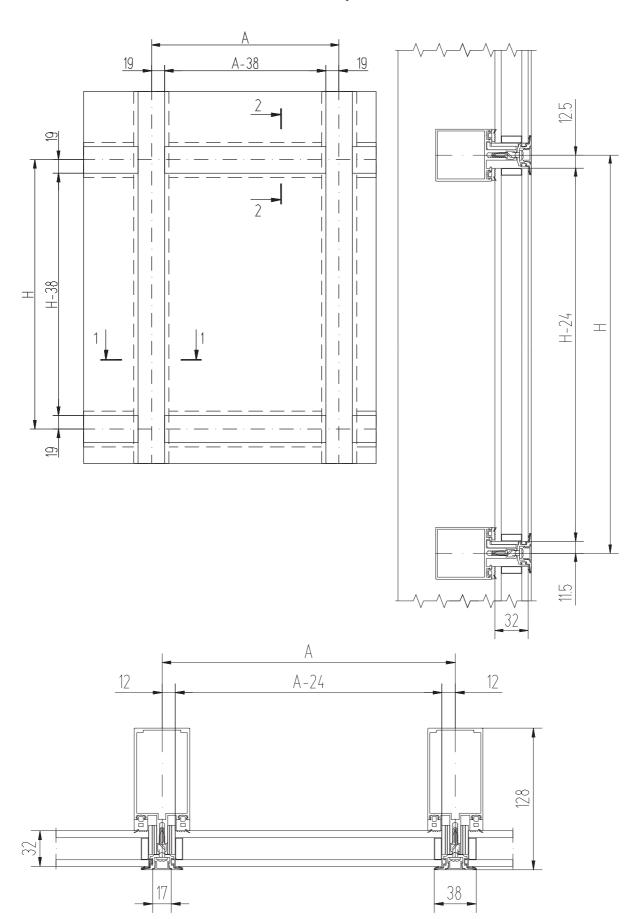
Схема выполнения полуструктурного остекления с видимыми ригелями



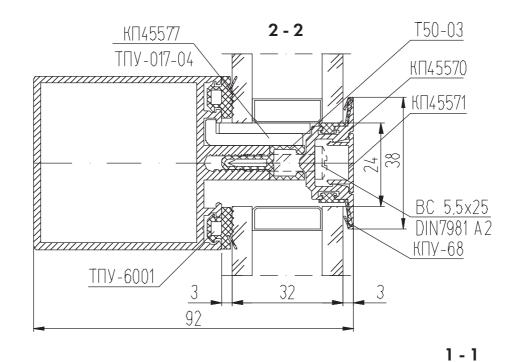


50


КП45372

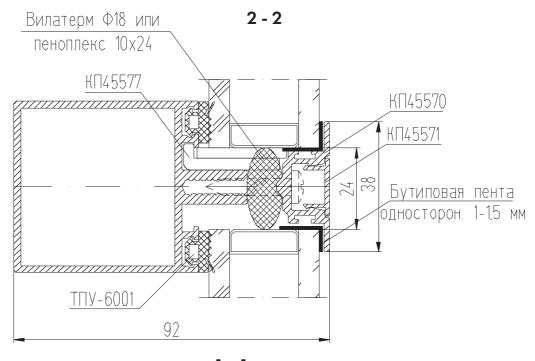

Комплектация:

- 1. Держатель КП45313-2
- 2. Крышка
- 3. Термовставка Т50-02
- 4. Винт D7981 ZN PZ 4,8x45 11. Уплотнитель ТПУ-6002
- Подкладка КП45391
- Подкладка ТПУ-017-06
- 7. Подкладка ТПУ-017-03
- Подкладка ТПУ-017-04
- 9. Уплотнитель ТПУ-007ММ
- 10. Уплотнитель ТПУ-6001
- 12. Герлен ЛТ 50 x1,5
- 13. DÖW CORNING 791
- 14. Вилатерм

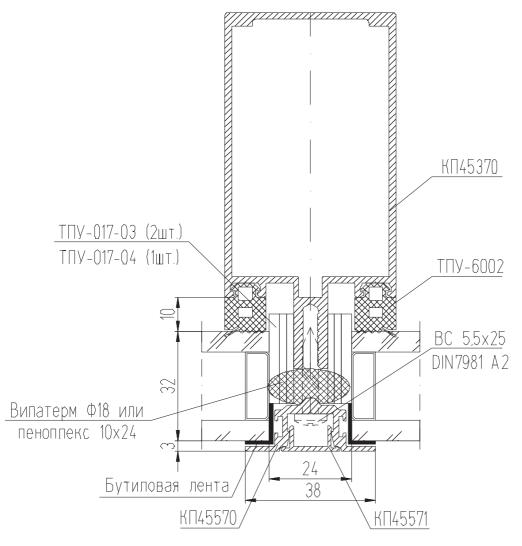


®

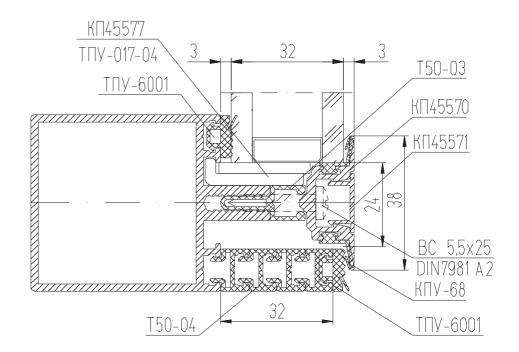
Схема выполнения имитации структурного остекления ("плоского" фасада)

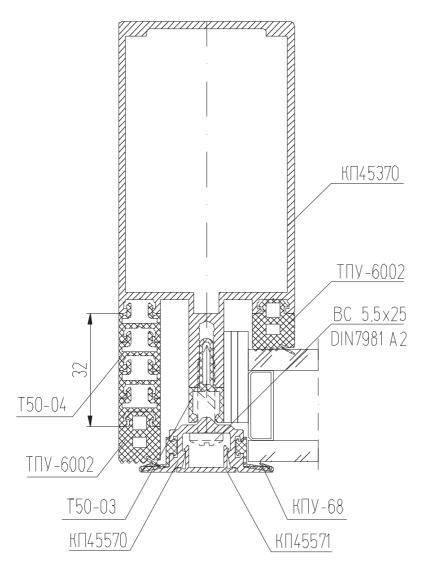


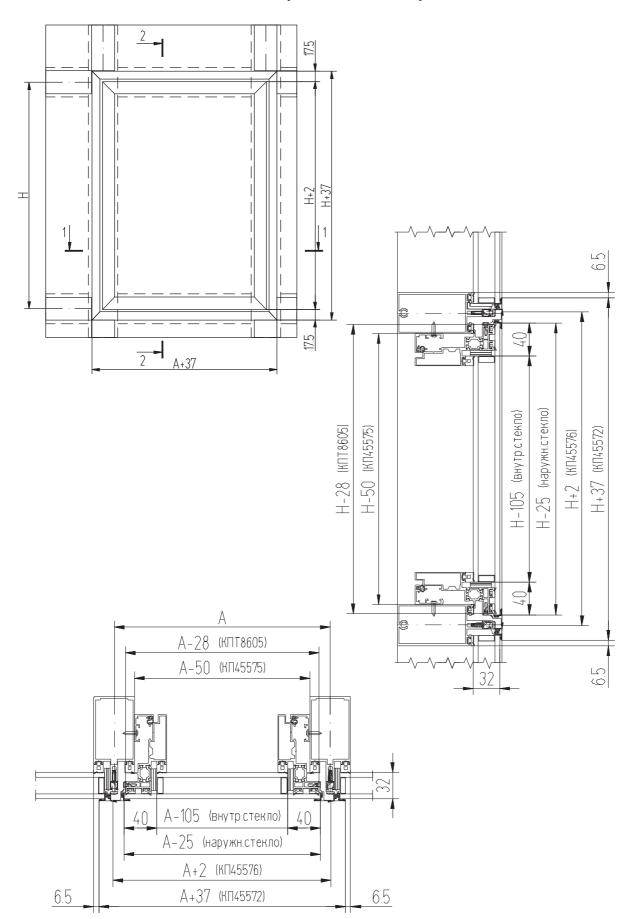
Стандартные сечения витража



1 - 1 Вариант с крышкой КПУ-202 572 32 128 КПУ-202 38 КП45370 ТПУ-6002 32 ТПУ-017-03 (2шт.) ТПУ-017-04 (1шт.) _____ КПУ-68 <u>T50-</u>03, BC 5,5x25 КП45570 КП4557 DIN7981 A 2


Вариант сечений с бутиловой лентой и вилатермом




Сечения крайних стойки и ригеля

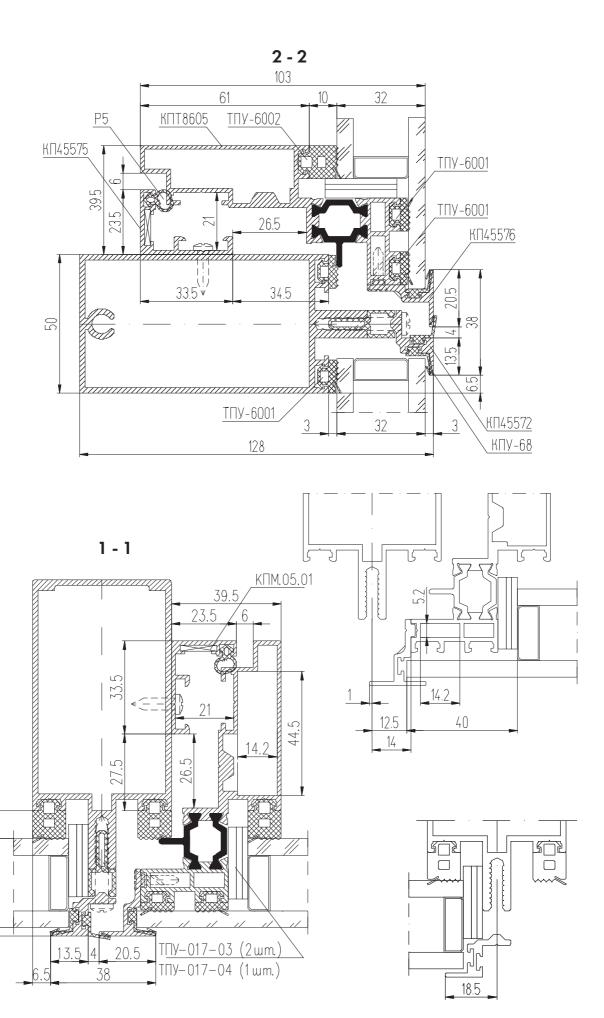
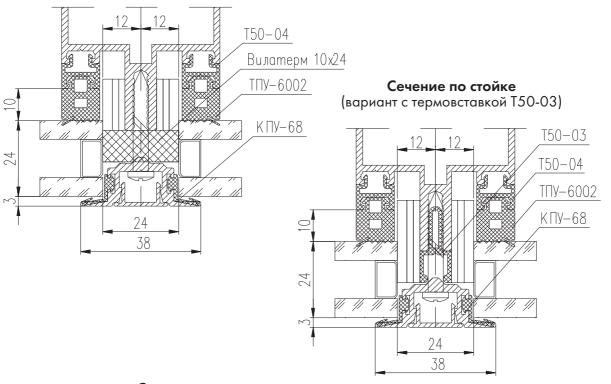
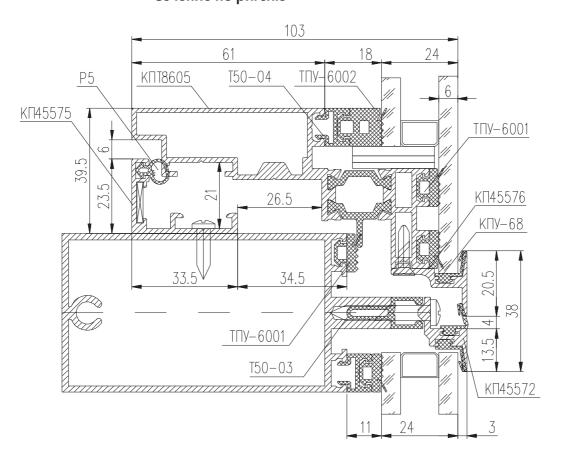


Схема выполнения имитации структурного остекления ("плоского " фасада) со створкой



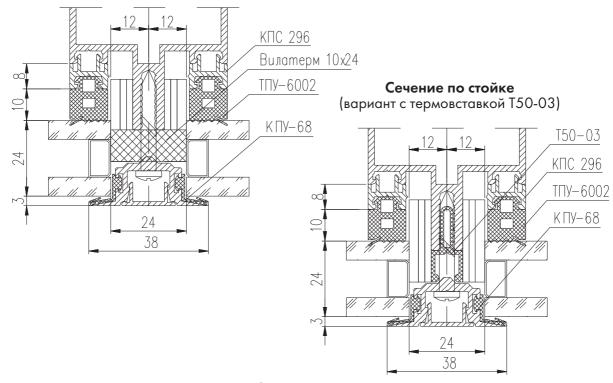
Сечения имитации структурного остекления ("плоского" фасада) со стеклопакетом 24 мм


(вариант с термовставкой Т50-04)

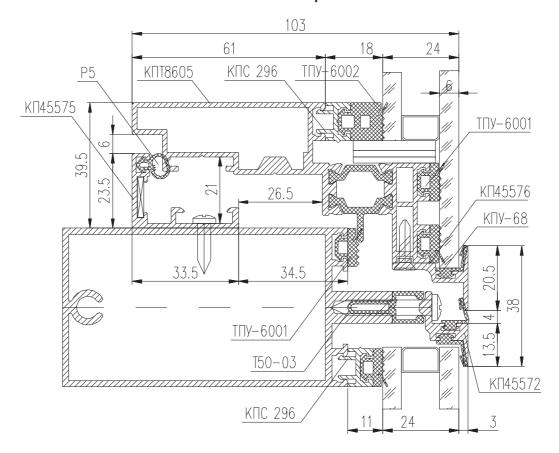
Сечение по стойке

(вариант с вилатермом)

Сечение по ригелю

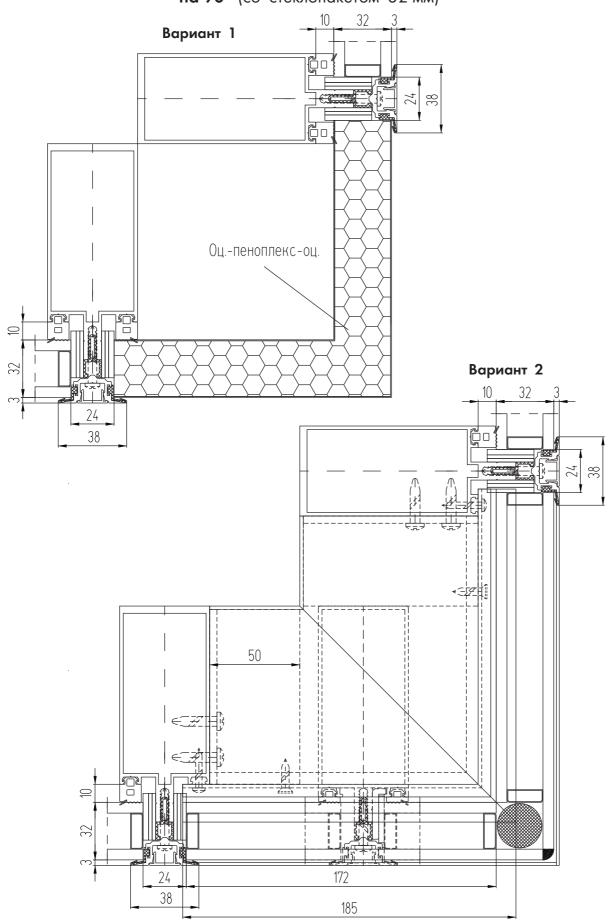


Сечения имитации структурного остекления ("плоского" фасада) со стеклопакетом 24 мм

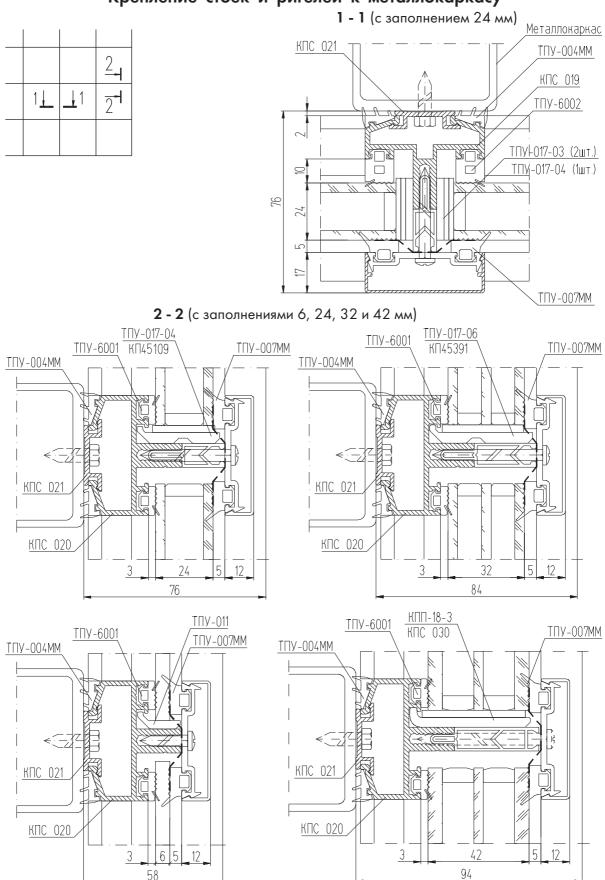

(вариант со штапиком КПС 296)

Сечение по стойке

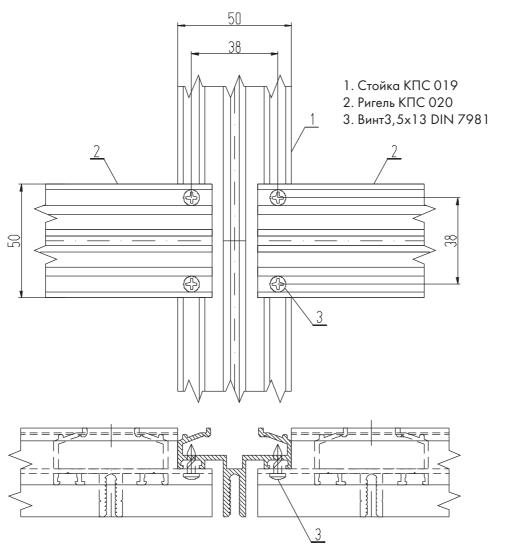
(вариант с вилатермом)



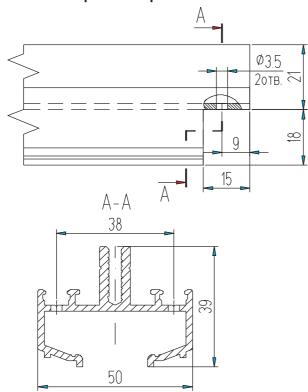
Сечение по ригелю

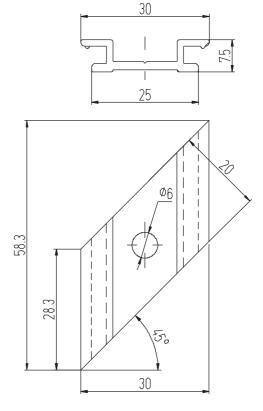


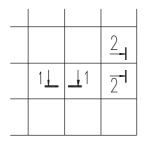
Поворот имитации структурного остекления ("плоского " фасада) на 90° (со стеклопакетом 32 мм)



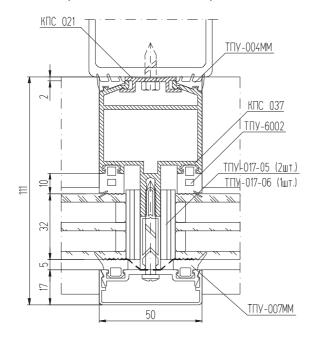
система СИАЛ КП50К

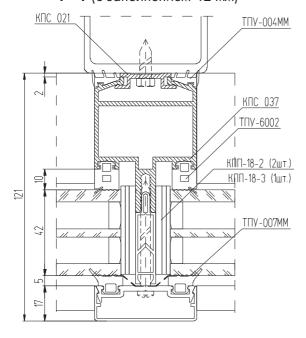

Крепление стоек и ригелей к металлокаркасу


Примечание: термовставки, подкладки, держатели, крышки, герлен, винты комплектуются аналогично стандартным узлам в соответствии с выбранным заполнением.

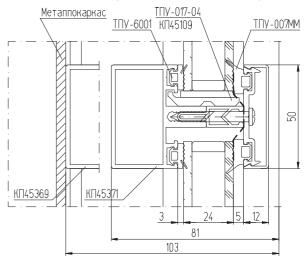


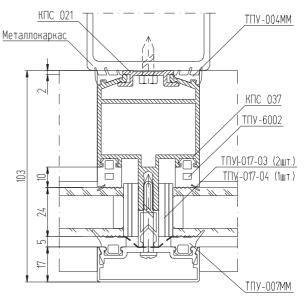
Обработка клипсы КПС 021



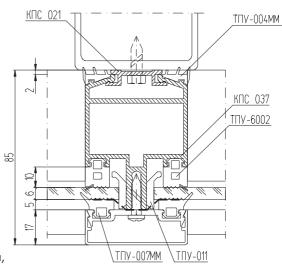

Крепление только стоек к металлокаркасу

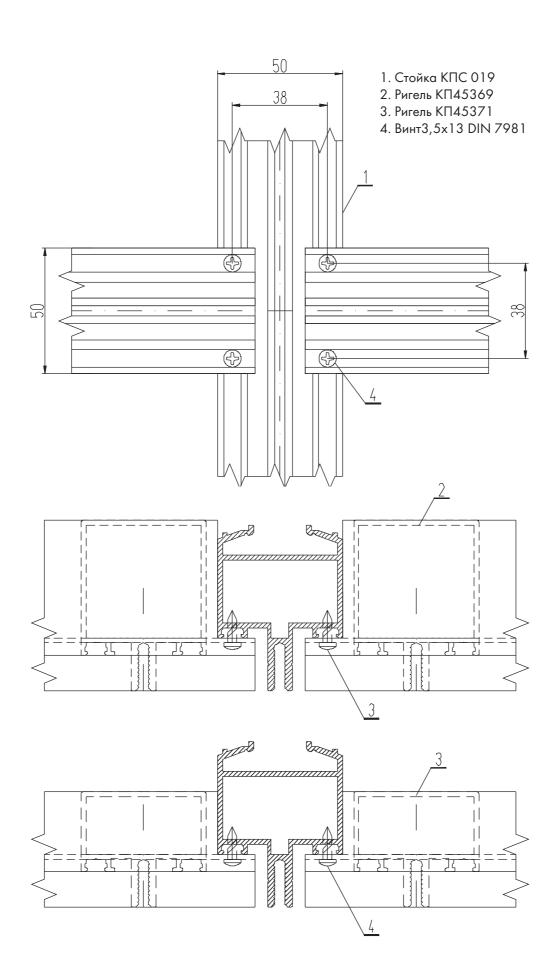
1 - 1 (с заполнением 32 мм)

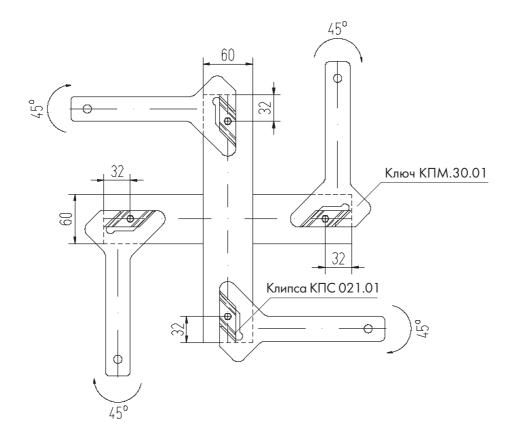

1 - 1 (с заполнением 42 мм)

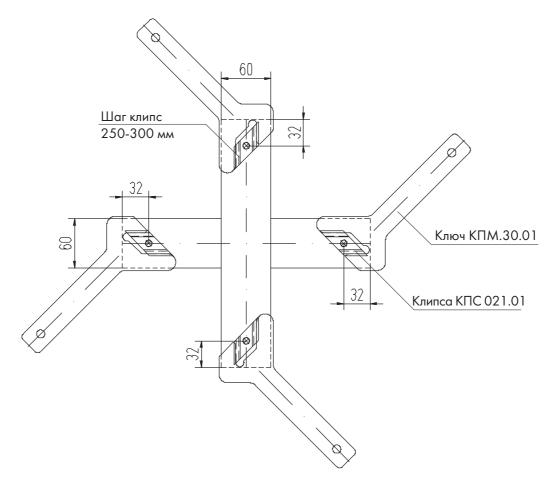

Примечание:

термовставки, подкладки, держатели, крышки, герлен, винты комплектуются аналогично стандартным узлам в соответствии с выбранным заполнением.


2 - 2 (с заполнением 24 мм)


1 - 1 (с заполнением 24 мм)


1 - 1 (с заполнением 6 мм)



Первоначальная ориентация клипс до поворота

Ориентация клипс после поворота на 45°

ГЕОМЕТРИЧЕСКИЕ

система СИАЛ КП50К

N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м длины, кг	Периметр, мм	J _X CM ⁴	W _X	J _Y CM ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
1	КП45102	22.4	45	5,926	1,6	237	6,54	3,03	13,44	6,0
2	КП45109	34.5	34,8	1,347	0,364	79,3	0,03	0,06	1,32	0,75
3	КП45306	5 29	15	0.472	0.127	72.1	0.07	0.11	0.05	0.1
4	КП45309	25 25 50	51.1	0.863	0.233	143.8	0.09	0.09	2.81	1.12
5	КП45309-1	25 96	51.1	1.01	0.273	142.4	0.1	0.1	3.1	1.24
6	КП45310	25	52.3	1.037	0.288	170.3	0.26	0.20	3.81	1.52
7	КП45310-1	25	52.3	1.19	0.322	168.6	0.28	0.21	4.13	1.65
8	КП45313-2	24 5	48	1.31	0.355	141.6	0.05	0.09	2.75	1.14

N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м Длины, кг	Периметр, мм	J _Х См ⁴	W _X	J _Y CM	W _Y
1	2	3	4	5	6	7	8	9	10	11
9	КП45314	25 25 25 25 25 25 25 25 25 25 25 25 25 2	56.7	1.966	0.531	200.4	2.69	1.22	6.6	2.64
10	КП45315	25	76.1	2.566	0.693	250.4	10.98	3.2	10.17	4.07
11	КП45318	48.05	88.8	7.436	2.008	259.7	1.39	0.95	51.33	10.68
12	КП45319	30 30	30.1	1.387	0.374	89.7	0.03	0.12	0.99	0.66
13	КП45320	372	77	2.378	0.642	395.2	6.37	2.48	16.21	4.35
14	КП45321	50	101.3	3.524	0.951	502.2	15.87	4.64	43.79	8.77
15	КП45322	34.5	92.4	7.363	1.988	423.6	21.51	5.44	56.42	16.35
16	КП45324	9 60	60	1.72	0.466	201.6	0.19	0.35	4.98	1.66

N	Шифр профиля	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м Длины, кг	Периметр, мм	J _X	W _X	J _Y CM	W _Y
	2	3	TANAN OK	5	6	7	8	9	10	11
17	КП45326-1	13	26.1	0.442	0.12	80.5	0.02	0.03	0.29	0.22
18	КП45329	24.29 50	47	1.585	0.428	148.6	0.08	0.13	2.73	1.12
19	КП45330	2527 S 50	51	0.896	0.242	140.5	0.1	0.11	2.58	1.02
20	КП45331	50	50.5	2.186	0.59	171.6	0.13	0.23	3.66	1.46
21	КП45332	50	50	1.65	0.446	146.4	0.06	0.12	2.35	0.94
22	КП45339	12	17.6	0.524	0.141	94.3	0.09	0.11	0.11	0.18
23	КП45340	50 75	103.2	14.654	3.967	343.6	8.90	3.98	156.63	31.33
24	КП45349	58.6	117.2	3.44	0.929	319	1.06	0.66	40.29	6.88

—————————————————————————————————————	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см					J _Y CM	W _Y
_1 2 25 КП45350	3	96.4	2.98	0.805	7 273	0.58	0.43	23.01	4.78
26 КП45354	60 222	120.5	4.649	1.255	399.9	0.92	0.75	59.45	9.91
27 КП45355	120	110.55	3.719	1.007	335.9	0.45	0.56	45.71	8.31
28 КП45356	4364 88	85.7	3.107	0.841	284.2	0.39	0.51	23.55	5.4
29 КП45357	35 50 50 70	70	2.1	0.569	223.9	0.24	0.48	8.11	2.32
30 КП45360	28.96	57.9	1.872	0.507	186.1	0.5	0.4	5.96	2.06
31 КП45363	30 885	61.9	1.17	0.317	194.3	0.28	0.21	5.97	1.99
32 КП45366	25 1607	84	5.72	1.549	332.3	34.67	8.46	17.29	6.92

N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м Длины, кг	Периметр, мм	J _X CM ⁴	W _X	J _Y	W _Y CM ³
1	2	3	4	5	6	7	8	9	10	11
33	КП45367	25	50	2.655	0.719	246	1.8	0.99	3.4	1.36
34	КП45368	70 9888 50	109.8	7.286	1.973	401.9	92.74	17.38	24.55	9.82
35	КП45369	25	79.65	5.339	1.445	329.8	25.75	7.52	16.19	6.48
36	КП45370	70.	109.8	6.84	1.852	388.3	82.09	15.27	23.75	9.50
37	КП45371	25	60.8	4.379	1.186	287.9	8.42	3.32	11.5	4.42
38	КП45372	25 50	152.1	8.51	2.304	486.4	205.3	27.28	33.47	13.39
39	КП45374	25	106.1	3.234	0.876	228	30.63	5.64	12.90	5.16
40	КП45375	25	77.4	5.627	1.524	394.7	26.35	7.66	14.30	5.72

N	Пифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м длины, кг	Периметр, мм	Ј _Х СМ ⁴	W _X	J _Y CM ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
41	КП45376	413	88.6	6.996	1.894	459.3	32.92	7.97	32.92	7.97
42	КП45377	58.25	124.3	13.452	3.642	323.6	45.68	20.30	217.06	37.26
43	КП45378	73.8 52	143.4	19.403	5.253	469.7	52.81	23.47	395.29	53.56
44	КП45380	235	108.2	5.618	1.521	402.7	58.99	10.49	6.48	2.76
45	КП45381	28.37	89.6	4.237	1.147	319.4	33.20	7.23	5.10	1.80
46	КП45382	52.9	105.7	3.362	0.91	277.2	1.39	0.87	28.45	5.38
47	КП45390	77.25	150.9	15.692	4.249	379.6	55.13	24.50	380.64	52.68
48	КП45391	2202 87	43.4	1.733	0.469	97.3	0.04	0.08	2.67	1.21

®

—————————————————————————————————————	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м Длины, кг	Периметр,	J _X	W _X	J _Y	W _Y
1 2	3	4	5	6	7	8	9	10	11
49 КП45392	92.58	181.4	12.1	3.276	536.3	44.61	17.84	469.37	50.7
50 КП45393	66	110	16.898	4.575	560.4	131.43	22.89	112.3	34.03
51 КП45394	24.98	116.5	7.865	2.129	402.3	109.36	17.59	24.43	9.77
52 КП45395	25	77	5.342	1.446	333.6	23.42	6.52	14.52	5.81
53 КП45396	12	13.8	0.409	0.111	71.3	0.02	0.04	0.07	0.12
54 KΠ45397	12	12.6	0.265	0.072	51.8	0.02	0.05	0.05	0.08
55 КП45398	100 100 100 100 100 100 100 100 100 100	200,2	23.62	6.395	547.1	10,91	4.48	737.21	73.72
56 КП45435-	20	20.04	0.394	0.107	58.2	0.002	0.01	0.13	0.13

—————————————————————————————————————	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м Длины, кг	Периметр, мм	J _X	W _X	J _Y CM	W _Y
<u>1</u> 2 57 ΚΠ45452	3 25 50	50.3	1.21	0.328	7 159	0.05	0.10	3.06	1.22
58 КП45453	25 77 CS	50.3	2.174	0.59	240.8	0.68	0.45	3.17	1.27
59 КП45470	2051	111.4	6.233	1.688	383.6	55.5	9.33	8.26	4.03
60 КП45474	14.15	44	1.627	0.441	190.6	2.27	0.94	1.15	0.81
61 КП45475	68	68	1.807	0.489	182.7	0.06	0.1	7.5	2.21
62 КП45476	35 77 E	71.7	1.277	0.346	210.3	0.29	0.22	8.53	2.44
63 КП45477	70	70.7	1.103	0.299	183.8	0.1	0.1	6.53	1.87
64 КП45478	1151	63.6	4.125	1.117	173.9	13.32	3.96	2.65	2.3

N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м Длины, кг	Периметр, мм	J _X CM	W _X	J _Y CM	W _Y
1	2	3	4	5	6	7	8	9	10	11
65	КП45479	22.71	153.2	8.113	2.197	471.6	156.54	18.52	9.86	4.34
66	КП45489	22.4 82 12	45	5.147	1.394	239	5.51	2.59	12.22	5.46
67	КП45490	7 2	14	0.449	0.122	32	0.01	0.05	0.05	0.07
68	КП45491	225	84.5	7.594	2.056	373	58.71	16.31	7.4	3.29
69	КП45492	45	62.5	6.194	1.677	317	17.88	8.13	7.37	3.28
70	КП45548	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	126.1	8.15	2.207	421.1	140.01	21.26	28.08	11.23
71	КП45549	44.25	99.3	11.212	3.036	267.6	36.24	16.11	106.22	24
72	КП45550	25 9529	126.1	7.414	2.007	434.6	120.73	19.3	28.18	11.27

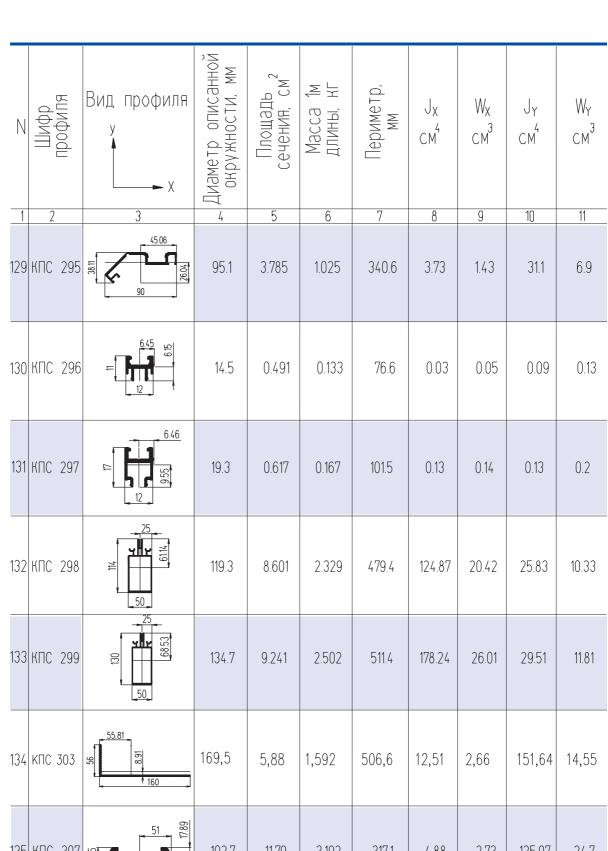
N	Пифр Профипя	Вид профиля у х	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м длины, кг	Периметр, мм	J _X	W _X	Ј _Ү См ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
73	КП45563	43.37	111.5	8.575	2.322	526.2	92.94	15.76	43.63	10.06
74	КП45564	32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66	4.747	1.285	275.1	0.78	0.61	18.37	5.74
75	КП45565	16.46 30.32	31.3	0.811	0.22	90	0.1	0.11	0.62	0.38
76	КП45566	33.01	39.1	1.0	0.271	109.3	0.62	0.41	0.85	0.46
77	КП45567	1025	205.3	29.78	8.063	987.7	236.78	30.34	774.75	75.59
78	КП45568	205	205.1	21.16	5.729	534.4	1.9	3.35	761.17	74.26
79	КП45569	115.65	205.8	29.17	7.898	763.7	364.53	39.99	870.02	75.23
80	КП45570	19 19 833	39.4	1.33	0.36	141.3	0.33	0.4	1.09	0.57

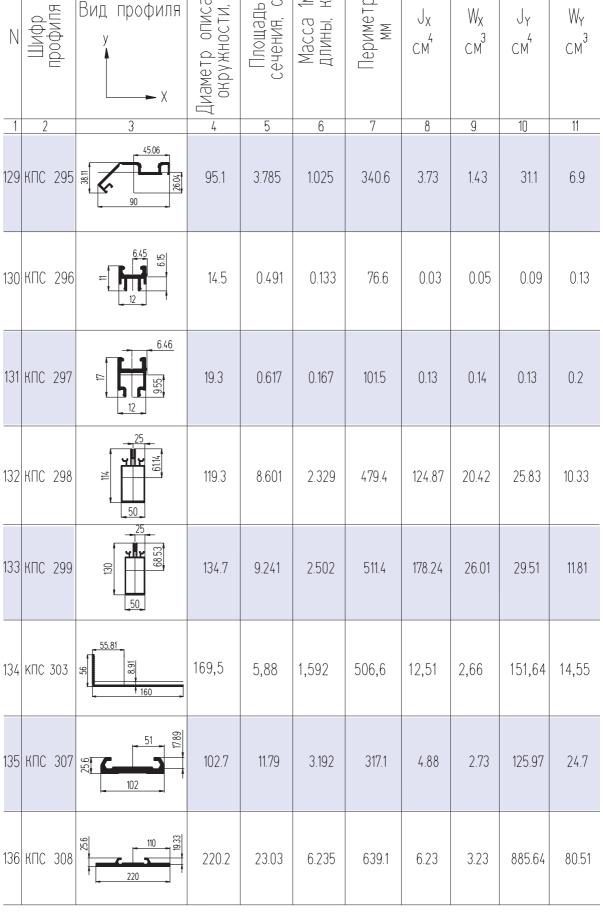
	ı			ı	ı			ı	ı	
N	Пифр Профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м длины, кг	Периметр, мм	Ј _Х СМ ⁴	W _X	Ј _Ү СМ ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
81	КП45571	8.5	17.1	0.333	0.09	60.8	0.02	0.03	0.08	0.1
82	КП45572	12.35	26.7	0.87	0.235	91.5	0.24	0.3	0.23	0.19
83	КП45575	2191	40.5	1.24	0.335	166.2	0.64	0.38	1.58	0.72
84	КП45576	11.87 92 92 92 92 92 92 92 92 92 92 92 92 92	28.7	0.92	0.248	102.7	0.56	0.36	0.14	0.12
85	КП45577	15.27	28.8	1.09	0.295	69.3	0.03	0.05	0.79	0.52
86	КП1225	68.18	140	2.646	0.717	355	2.56	0.95	55.19	8.1
87	КП1336	235	66,6	4,8	1,3	307,7	12,76	4,01	16,57	7,05
88	КП1425	35.3	71	1.6	0.434	216.5	0.16	0.16	8.22	2.33

N	дфиП ~	Вид профиля	Диаметр описанной окружности, мм	Площадь ₂ сечения, см	масса 1м длины, кг	Лериметр, мм	J _X CM ⁴	W _X C M ³	J _Y CM ⁴	W _Y CM ³
89	КП1510	36	84	9,885	2,679	238,4	30,60	13,61	61,92	17,2
90	КП1511	22	62,1	7,645	2,072	176,3	21,18	9,41	16,89	7,68
91	564097	33.73	85.6	1.46	0.396	199.2	2.05	0.79	8.35	2.48
92	КПС 001	20 88	40.1	1.348	0.365	102.7	0.04	0.11	1.82	0.91
93	КПС 002	23.5 62.7 95 49	71.5	4.852	1.314	346.1	14.27	4.35	18.06	7.37
94	КПС 008	4203 9 7543	76	5.12	1.387	225.4	1.47	1	27.03	6.43
95	КПС 009	25 7722	73	4.216	1.142	247.2	16.88	6.2	16.04	6.42
96	КПС 013	215	22.1	0.49	0.133	56.1	0.01	0.02	0.22	0.2

®

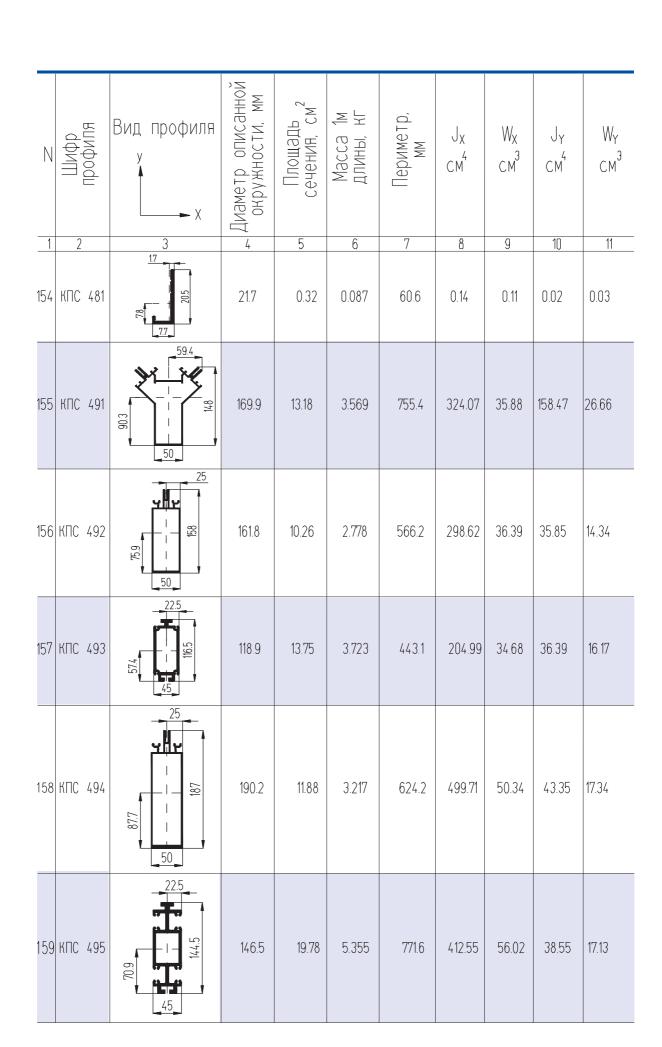
	ı			ı	ı			ı	1	
N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м Длины, кг	Периметр, мм	J _Х СМ ⁴	W _X	J _Y	W _Y CM ³
1	2	3	4	5	6	7	8	9	10	11
97	КПС 014	215	218	13.06	3.536	610.3	51.61	20.64	738.46	65.98
98	КПС 016	92.09	183.3	22.41	6.067	861.9	44.69	19.86	738.22	80.17
99	КПС 019	25.	52.3	3.49	0.945	338.9	3.52	1.59	6.86	2.74
100	КПС 020	25 27 270 2	53.6	3.68	0.996	352.5	3.44	1.71	8.58	3.43
101	КПС 021	15 15 7	30	0.84	0.227	98.4	0.05	0.12	0.63	0.42
102	КПС 037	25	71.6	5.49	1.487	380.9	19.3	5.46	14.7	5.88
103	КПС 038	31.75	66.6	4.85	1.313	317.4	16.63	7.08	12.57	3.96
104	КПС 039	22.5	45	5.04	1.365	211.3	6.93	3.2	10.35	4.6


N	Пифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²		Периметр, мм		W _X	J _Y CM⁴	W _Y
1	2	3 24.02	4	5	6	7	8	9	10	11
105	КПС 040	40	59.2	5.52	1.495	242.7	15.58	6.92	9.03	3.76
106	КПС 041	43.54	84.1	9.71	2.629	403.8	31.32	13.92	45.11	10.36
107	КПС 044	63 126	126	5.42	1.467	461.4	4.34	1.93	81.56	12.94
108	КПС 233	21.44	115	6.375	1.726	447.1	52.84	8.62	19.76	6.92
109	КПС 234	20.46	109.4	5.657	1.532	382.8	50.74	8.5	7.49	3.66
110	КПС 235	25	84.8	5.153	1.395	355.6	29.08	7.08	16.31	6.52
111	КПС 236	25 7689	102.1	4.82	1.305	428.6	28.26	4.42	8.55	3.42
112	КПС 237	18.97 18.97 18.27 35	82.3	4.885	1.323	328.8	21.36	5.05	6.57	3.46



N	Пифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м Длины, кг	Периметр,	J _X	W _X CM ³	J _Y	W _Y
1	2	3	4	5	6	7	8	9	10	11
113	КПС 238	23.66	57.3	3.728	1.009	271.3	4.55	2.34	7.61	3.21
114	КПС 242	29.42	62.9	3.434	0.93	301.6	8.89	3.18	5.49	1.86
115	КПС 243	4.56	14.9	0.258	0.07	38.9	0.04	0.06	0.01	0.01
116	КПС 244	9.41	62	3,781	1,024	164,4	12,06	3,56	1,48	1,57
117	КПС 263	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	28.4	0.863	0.234	118.2	0.55	0.38	0.19	0.32
118	КПС 267	92.5 [7790]	201.4	22.72	6.151	744.7	464.97	43.69	429.41	46.42
119	КПС 268	17 99 27 34	34	1.491	0.404	101.1	0.03	0.1	1.38	0.81
120	КПС 286	7077 45 90 90	90	3.546	0.96	330.5	0.88	0.68	29.35	6.52

—————————————————————————————————————	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м Длины, кг		J _X CM ⁴	W _X	J _Y CM	W _Y
_12 121 КПС 287	3	100	3.853	1.043	356.3	1.47	0.93	38.81	7.76
122 КПС 288	555	110	4.185	1.133	384.3	2.36	1.29	50.65	9.21
123 КПС 289	967 120 27	120	4.559	1.234	415.9	3.83	1.81	65.97	11
124 КПС 290	65	130	4.997	1.353	452.9	6.34	2.57	86.21	13.26
125 KNC 291	35.38	70.7	3.06	0.829	279.5	0.88	0.73	15.08	4.26
126 КПС 292	38.08	75.9	3.213	0.87	292.4	1.15	0.73	18.07	4.75
127 КПС 293	40.64	81.6	3.379	0.915	306.3	1.61	0.86	21.6	5.31
128 КПС 294	\$62 \$62 \$85	87.8	3.566	0.966	322.2	2.38	1.08	25.87	6.02


N	Шифь виифоdи	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м длины, кг	Периметр, мм	Ј _Х СМ ⁴	W _X	Ј _Ү СМ ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
137	КПС 309	54.02	104	8.23	2.228	297.6	0.98	0.68	76.34	14.13
138	КПС 310	35 859	70	2,24	0,607	186,6	0,1	0,16	7,5	2,14
139	КПС 311	42.5 85 ES	85	2.69	0.728	222.3	0.33	0.32	14.17	3.33
140	КПС 312	33.3	100	3.39	0.918	276.8	2.4	1.24	26.7	5.34
141	КПС 313	52.5	105	3.81	1.032	308.9	5.3	2.1	34.21	6.52
142	КПС 314	555	110.2	4.38	1.186	352.5	11.46	3.53	44.61	8.11
143	КПС 344	705	152.1	8.532	2.31	490.3	34.63	13.85	211.25	27.26
144	КПС 345	84.7	181.4	9.732	2.635	550.3	41.54	16.62	345.37	37.03

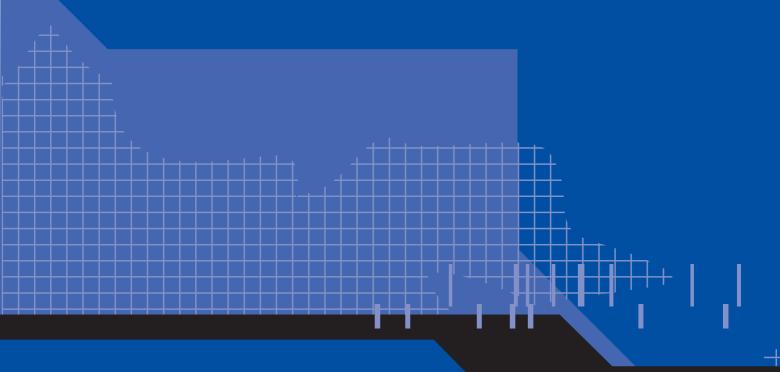
	l	ı		I	I	ı		l	I	I
N	Шифр профиля	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м длины, кг	Периметр, мм	Ј _Х СМ ⁴	W _X	Ј _Ү СМ ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
145	КПС 370	25	242.5	14.29	3.869	660	994.18	79.22	58.42	23.37
146	КПС 371	25.5	77	5.44	1.473	347	25.98	7.63	17.02	5.78
147	КПС 372	25.7	62.2	4.48	1.213	305	8.46	3.36	11.87	4.05
148	КПС 427	22.5	206.8	19.65	5.32	866.9	878.57	85.3	18.14	8.06
149	КПС 437	25	282.1	22.77	6.165	776.8	1998.51	142.46	94.71	37.88

N	∏ d⊔	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м длины, кг		J _X	W _X	J _Y	W _Y
1	2	3	4	5	6	7	8	9	10	11
150	КПС 438	215	238.2	24.89	6.739	961.9	1381.12	114.71	40.28	18.73
151	КПС 439	132.8	282.1	36.72	9.942	859.9	3030.75	205.87	142.46	56.98
152	КПС 440	39 812	219.3	23.07	6.246	884.7	1085.4	97.89	31.69	16.25
153	КПС 475	25	217.8	12.83	3.474	624.3	731.84	63.14	53.56	21.42

N	ифоdи	Вид профиля У х	Диаметр описанной окружности, мм					W _X	J _Y CM	W _Y CM ³
_1	2	3 25	4	5	6	7	8	9	10	11
160	КПС 496	106.6	226.7	13.37	3.62	699.4	800.96	68.25	51.83	20.73
161	КПС 497	35.7	101.7	5.14	1.392	306.8	19.44	5.36	40.86	7.52
162	КПС 498	R 2775	55	2.82	0.764	239.9	1.92	1.38	6.21	2.26
163	КПС 499	250	106.1	8.08	2.188	458.1	95.78	18.15	23.7	9.48
164	КПС 500	25 25 25 25 25 25 25 25 25 25 25 25 25 2	62.7	5.52	1.495	449.3	11.15	4.01	11.45	4.58
165	КПС 501	25	108.8	7.32	1.982	293.9	105.29	21.71	28.43	11.37
166	КПС 557	25 25 25 25 25 25 25 25 25 25 25 25 25 2	62.7	5.21	1.411	433.3	10.88	3.51	10.54	4.21

N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см²	Масса 1м Длины, кг	Периметр, мм	J _X CM ⁴	W _X	Ј _Ү СМ ⁴	W _Y
1	2	3	4	5	6	7	8	9	10	11
167	КПС 575	24 48	48	1.48	0.401	164.6	0.16	0.23	2.86	1.19
168	КПС 576	579	58	1.79	0.485	179.6	0.34	0.31	5.98	2.07
169	КПС 584	25	168.7	10.55	2.856	510	353.1	39.11	39.26	15.7
170	КПС 585	2225	134.1	14.99	4.059	474.1	287.84	43.02	41.61	18.5
171	КПС 586	25	168.7	9.21	2.494	524.3	282.2	32.64	38.54	15.42
172	КПС 608	225 ———————————————————————————————————	77.7	10.33	2.797	359.7	58.12	15.42	21.95	9.76

N	Шифр профипя	Вид профиля	Диаметр описанной окружности, мм	Площадь сечения, см	Масса 1м длины, кг	Периметр, мм	J _Х СМ ⁴	W _X	J _Y CM	W _Y
1	2	3	4	5	6	7	8	9	10	11
173	КПС 633	25 002	272.2	19.59	5.304	720.8	1501.57	104.91	87.55	35.02
174	КПС 634	25	207.9	12.01	3.252	594.8	600.07	57.34	48.32	19.33
175	КПС 635	2225	173.7	21.61	5.851	826.1	648.49	74.06	43.78	19.46
176	КПС 636	502	207.9	10.81	2.927	604.3	503.3	46.9	47.77	19.11



Теплые профили

	İ										
Ν	Шифр виифоdи	Вид профиля У _Д х	Масса общая 1м длины, кг	Масса алюминия 1м длины, кг	Диаметр описанной окружности, мм	Площадь сечения, см²	Периметр. мм	Ј _Х СМ ⁴	W _x	J _Y CM	W _Y
1	2	3	4	5	6	7	8	9	10	11	12
1	КПТ7434	36.05	1.282	1.165	77.3	5.192	372.5	5.72	1.96	20.63	5.72
2	КПТ7435	42.02 99 80 74.5	1.343	1.226	84.2	5.416	388.5	5.8	1.99	25.58	6.09
3	КПТ8605	57.06	1.582	1.428	108.5	6.5	388.3	10.46	3,66	45.07	7.9

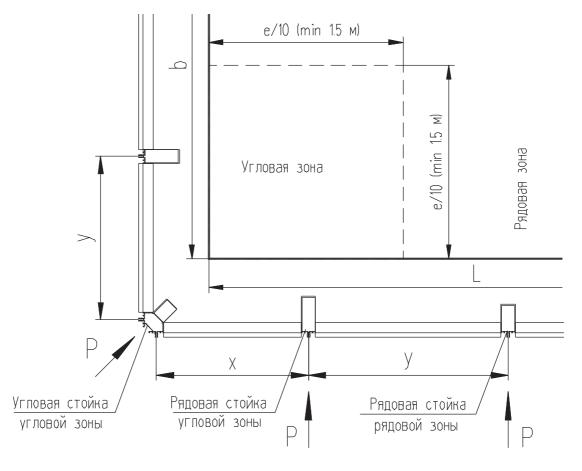
МЕТОДИКА ПОДБОРА СТОЕК И РИГЕЛЕЙ В ЗАВИСИМОСТИ ОТ НАГРУЗОК

Расчеты производятся по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Материалы

Предоставленные в каталоге профили изготавливаются из алюминиевого сплава марки АД31 по ГОСТ 22233-2001.

Механические свойства прессованных профилей при испытаниях на растяжение должны быть не меньше величин, указанных в таблице, и гарантируются заводомизготовителем.


Обозна- чение марки	Состояние материала	Обозначение состояния материала	Толщина стенки профиля (мм)	Временное сопротив- ление σ_{B_r} МПа	Предел текучести, МПа	Относитель ное удлине- ние λ, %
АД31	Закаленное и искусственно состаренное	T1	Все размеры	196,0	147,0	8,0
АД31	Закаленное и искусственно состаренное повышенной прочности	T1 (22)	До 10 включ.	215,0	160,0	8,0

ПЕРЕВОДНЫЕ ФОРМУЛЫ

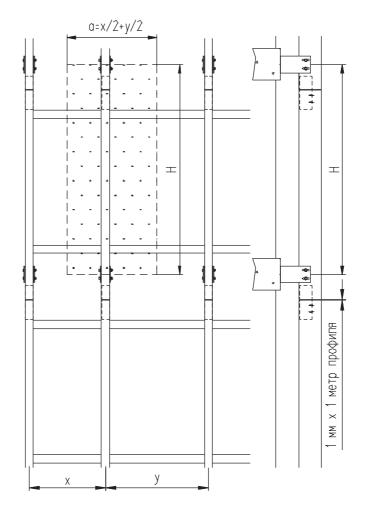
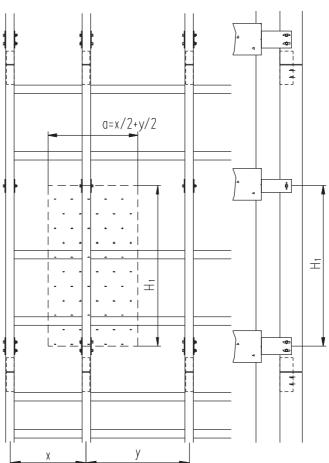

1 Па (Паскаль) = 0,1 кгс/м² 1 кгс/м² =
$$10^{-4}$$
 кгс/см²
1 H/M^2 = 1 Па 1 $H = 0,1$ кгс

Схема стоек для статических расчетов


Вепичина $oldsymbol{e}$ равна меньшему из $oldsymbol{b}$ и $oldsymbol{L}$

Двухопорная схема крепления

Трехопорная схема крепления

СТАТИЧЕСКИЕ РАСЧЕТЫ вертикальной стойки по двухопорной схеме

Вариант 1. Расчет рядовой стойки в рядовой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Высота стойки (тах из проекта), см:	310
Шаг стоек (max из проекта), м:	1,3
Аэродинамический коэффициент, с:	-1,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом

для рядовой зоны

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	III	IV	V	VI	VII
W ₀ , κΠa	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота z _е ,м	Коэффиь	циент k для типов	местности
	А -открытые	В - городские	С -городские
	побережья	территории,	районы
	морей, озер и	лесные	с застройкой
	водохра	массивы,	зданиями
	нилищ, степи.	равномерно	высотой
		покрытые	более 25 м .
		препятствиями	
		высотой более	
		10 м.	
до 5	0,75	0,5	0,4
10	1	0,65	0,4
20	1,25	0,85	0,55
40	1,5	1,1	0,8
60	1,7	1,3	1
80	1,85	1,45	1,15
100	2	1,6	1,25
150	2,25	1,9	1,55
200	2,45	2,1	1,8
250	2,65	2,3	2
300	2,75	2,5	2,2
350	2,75	2,75	2,35

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{oor.})$$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

 κ гс/с M^2 const

нормативное значение ветрового давления выбирается исходя из ветрового района

 KFC/M^2

высота стойки (максимальная из проекта)

H = 310

СМ

шаг стоек (максимальный из проекта)

М

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

$$f_{\text{доп}} =$$

$$H/300 =$$

const

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

$$k(z_e) =$$

Расчет ведем для рядовой зоны

аэродинамический коэффициент - величина постоянная

$$c =$$

$$Yf_1=$$

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

$$Yf_2=$$

1

const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

 $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП k(z_e) -

20.13330.2011

Высота Zе ,	Коэфициент пуль	саций давления в местности	ветра ζ для типов
М	Α	В	С
<=5	0,85	1,22	1,78
10	0,76	1,06	1,78
20	0,69	0,92	1,5
40	0,62	0,8	1,26
60	0,58	0,74	1,14
80	0,56	0,7	1,06
100	0,54	0,67	1
150	0,51	0,62	0,9

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП

ζ(Ze) -20.13330.2011

 $\zeta(Ze) =$ 0,86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

Α площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0,933

Расчитываем нормативное значение пиковой ветровой нагрузки

Wp= $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$

77,183

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле q = Wp *a = 1,003 кг/см

см⁴ $Jx = (5/384)*(qpacч*H^4)/(E*fдоп.)$

5/384 = 0.01302J_√ часть I= І-ая часть формулы $q_{pacy} *H^4 = 9266359640$ J_х часть II= II-ая часть формулы $E*f_{don.} = 733666,67$ J_x часть III= III-я часть формулы

 $J_x =$ 164,46 CM⁴ минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

Jx= 205,3 см⁴ 27,28 cm³ Wx=

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

> σ= $M/W_{n, min}$ R_{v}

где:

- изгибающий момент;

 $W_{n,\; min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной

плоскости:

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85); $\gamma_c = 1$

R_√=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле:

> $M = (1/8)*Q*a*H^2*Yf_1$ 168,74 кг*м

Требуемый минимальный момент сопротивления:

13,50 см³ Wn,min=

> $\sigma =$ M/W_{x} 618,56 кг/см² $R_v =$ 1250 KFC/CM²

> > Удовлетворяет условию прогиба

Вариант 2. Расчет рядовой стойки в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Высота стойки (тах из проекта), см:	310
Шаг стоек (тах из проекта), м:	1,3
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом

для угловой зоны

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	III	IV	٧	VI	VII
W₀, κΠa	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота z _е ,м	Коэффиц	иент k для типов	местности
	А -открытые побережья	В - городские территории,	С -городские районы
	морей, озер и	лесные	с застройкой
	водохра	массивы,	зданиями
	нилищ, степи.	равномерно	высотой
		покрытые	более 25 м .
		препятствиями	
		высотой более	
		10 м.	
до 5	0,75	0,5	0,4
10	1	0,65	0,4
20	1,25	0,85	0,55
40	1,5	1,1	0,8
60	1,7	1,3	1
80	1,85	1,45	1,15
100	2	1,6	1,25
150	2,25	1,9	1,55
200	2,45	2,1	1,8
250	2,65	2,3	2
300	2,75	2,5	2,2
350	2,75	2,75	2,35

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{\partial O \Pi})$$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

кгс/см2 const

нормативное значение ветрового давления выбирается исходя из ветрового района

$$W_0 = 38$$
 KFC/M²

высота стойки (максимальная из проекта)

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

$$f_{\text{doff}} = H/300 = 1,03$$
 cm const

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

$$k(z_e) = 0.975$$

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

$$Yf_1 = 1,4$$
 const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

$$Yf_2$$
= 1 const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

 $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ где

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП $k(z_e)$ -20.13330.2011

Высота Ze ,	Коэфициент пульсаций давления ветра ζ для типов местности				
М	Α	В	С		
<=5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП

ζ(Ze) -20.13330.2011

 $\zeta(Ze) =$ 0,86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

Α площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0,933

Расчитываем нормативное значение пиковой ветровой нагрузки

 $K\Gamma/M^2$ $W_o^*k(z_e)^*[1+\zeta(Ze)]^*C^*V^+(-)^*Yf_2$ 141,5

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле

Wp *a = 1,840 кг/см

 $Jx = (5/384)*(qpacч*H^4)/(E*fдоп.)$

5/384 = 0,01302J_x часть I= І-ая часть формулы $q_{pacy.}*H^4 = 16988326006$ J_x часть II= II-ая часть формулы J_x часть III= $E*f_{\text{доп.}} = 733666,67$ III-я часть формулы

 $J_x =$ 301,50 см4 минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

Jx= 351,1 см⁴

Wx= 39,11 см³

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

M / W_{n. min}

где:

М - изгибающий момент;

 $W_{n,\; min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

r_{max} - наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85). Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле

> $M = (1/8)*Q*a*H^2*Yf_1$ 309,36 кг*м

Требуемый минимальный момент сопротивления:

24,75 CM³ Wn,min=

> 1250 кгс/см² 791,00 кг/см² M/W_{x} R_v=

Вариант 3. Расчет угловой стойки в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Заполнение витража:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Высота стойки (тах из проекта), см:	310
Шаг стоек (тах из проекта), м:	1,3
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Угловая стойка

для угловой зоны

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	=	III	IV	\ \	VI	VII
W₀, κΠa	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

стеклопакетом

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота z _е ,м	Коэффи⊔	Коэффициент к для типов местности			
	А -открытые	В - городские	С -городские		
	побережья	территории,	районы		
	морей, озер и	лесные	с застройкой		
	водохра	массивы,	зданиями		
	нилищ, степи.	равномерно	высотой		
		покрытые	более 25 м .		
		препятствиями			
		высотой более			
		10 м.			
до 5	0,75	0,5	0,4		
10	1	0,65	0,4		
20	1,25	0,85	0,55		
40	1,5	1,1	0,8		
60	1,7	1,3	1		
80	1,85	1,45	1,15		
100	2	1,6	1,25		
150	2,25	1,9	1,55		
200	2,45	2,1	1,8		
250	2,65	2,3	2		
300	2,75	2,5	2,2		
350	2,75	2,75	2,35		

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{\partial on.})$$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

 KFC/CM^2 710000 const

нормативное значение ветрового давления выбирается исходя из ветрового района

 $\kappa \Gamma C/M^2$ $W_0 =$

высота стойки (максимальная из проекта)

H = 310 СМ

шаг стоек (максимальный из проекта)

a = 1.3 М

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

H/300= 1,03 СМ const $f_{DOI} =$

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) =$ 0.975

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

c = -2,2const

 $Yf_1=$ 1,4 const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

 $Yf_2=$ const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

 $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ где

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП k(z_e) -20.13330.2011

Высота Zе ,	Коэфициент пульсаций давления ветра ζ для типов					
M BBCOTA Ze,	местности					
IVI	А	В	С			
<=5	0,85	1,22	1,78			
10	0,76	1,06	1,78			
20	0,69	0,92	1,5			
40	0,62	0,8	1,26			
60	0,58	0,74	1,14			
80	0,56	0,7	1,06			
100	0,54	0,67	1			
150	0,51	0,62	0,9			

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП

 $\zeta(Ze)$ -20.13330.2011

 $\zeta(Ze) =$ 0,86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

площадь ограждения, с которой собирается нагрузка A -

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0,933

Расчитываем нормативное значение пиковой ветровой нагрузки

Wp= $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ 141,5

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле

Wp *a = 1,840 кг/см q =

```
CM<sup>4</sup>
Jx = ((5/384)*(qpacy*H^4)/(E*fдоп.))*cos45°
```

$$J_{x}$$
 = 213,19 cm^{4} минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

324,07 cm4 Wx= 35,88 см³

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

$$\sigma$$
= M / W_{n, min} < R_v

где:

M - изгибающий момент;

 $W_{\text{n. min}}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной r_{max}

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85); $\gamma_c = 1$

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле:

$$M = (1/8) *Q*a*H^2*Yf_1$$
 309,36 $Kr*M$

Требуемый минимальный момент сопротивления:

Wn,min=
$$M/R_v$$
 24,75 cm³

$$σ = M/W_x$$
 862,21 κγ/cm² < $R_v = 1250$ κγc/cm²

СТАТИЧЕСКИЕ РАСЧЕТЫ вертикальной стойки по трехопорной схемев

Вариант 1. Расчет рядовой стойки в рядовой зоне

Расчет вертикальной стойки по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Заполнение витража:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Расстояние между креплениями (max из проекта), см:	300
Шаг стоек (тах из проекта), м:	1,3
Аэродинамический коэффициент, с:	-1,2
Рассматриваемая стойка:	Рядовая стойка

для рядовой зоны

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	Ш	IV	V	VI	VII
W ₀ , кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

стеклопакетом

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2 Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффиц	циент k для типов і	иестности
	А -открытые побережья морей, озер и водохра нилищ, степи.	В - городские территории, лесные массивы, равномерно покрытые препятствиями высотой более 10 м.	С -городские районы с застройкой зданиями высотой более 25 м .
до 5	0,75	0,5	0,4
10	1	0,65	0,4
20	1,25	0,85	0,55
40	1,5	1,1	0,8
60	1,7	1,3	1
80	1,85	1,45	1,15
100	2	1,6	1,25
150	2,25	1,9	1,55
200	2,45	2,1	1,8
250	2,65	2,3	2
300	2,75	2,5	2,2
350	2,75	2,75	2,35

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = 0.00521*(q_{pac4}*H_1^4)/(E*f_{\partial on.})$$

где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

кгс/см² const

нормативное значение ветрового давления выбирается исходя из ветрового района

$$N_0 = 38$$
 Krc/M

Расстояние между креплениями стойки (максимальная из проекта)

$$H_1 = 300$$
 cm

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

M

$$f_{\text{don}} = H_1/300 = 1,00$$
 cm const

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

$$k(z_0) = 0.975$$

Расчет ведем для рядовой зоны

аэродинамический коэффициент - величина постоянная

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (CIT 20.13330.2011)

$$Yf_1 = 1,4$$
 const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (C∏ 20.13330.2011)

$$Yf_2 = 1$$
 const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

$$Wp = W_0 * k(z_e) * [1 + \zeta(z_e)] * C * V + (-) * Y f_2$$
 где

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП $k(z_e)$ -20.13330.2011

	Коэфициент пульсаций давления ветра ζ для типов						
Высота z_e , м		местности					
	Α	В	C				
<=5	0,85	1,22	1,78				
10	0,76	1,06	1,78				
20	0,69	0,92	1,5				
40	0,62	0,8	1,26				
60	0,58	0,74	1,14				
80	0,56	0,7	1,06				
100	0,54	0,67	1				
150	0,51	0,62	0,9				

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП ζ(Ze) -20.13330.2011

 $\zeta(Ze) =$ 0.86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

A площадь ограждения, с которой собирается нагрузка

коэффициенты корреляции ветровой нагрузки, соответствующие положительному

V+(-) давлению (+) и отсосу (-),

принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0,933

Расчитываем нормативное значение пиковой ветровой нагрузки

Wp=
$$W_0*k(z_e)*[1+\zeta(z_e)]*C*V+(-)*Yf_2$$
 77,1825 Kr/M²

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

$$q = Wp *a = 1,003 κr/cm$$

 $Jx = 0.00521*(qpacч*H_1^4)/(E*fдоп.)$

59,64

0.00521 = 0.00521

J_х часть I= Ј_√ часть II=

 $qpacy.*H_1^4 = 8127320665$

І-ая часть формулы II-ая часть формулы

минимально допустимый момент инерции стойки

J_x часть III=

 $J_x =$

 $E*f_{don.} = 710000,00$

см⁴

III-я часть формулы

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

КП45370 82,09 CM⁴

Wx= 15,27 CM3

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

 R_v

см⁴

 $M/W_{n, min}$

где:

- изгибающий момент;

 $W_{n,\,min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости;

 $\gamma_c = 1$ - коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

 R_v =125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-

Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле:

 $M = 0.07*Q*a*H_1^2*Yf_1$

88,50 кг*м

Требуемый минимальный момент сопротивления:

 M/W_{\star}

Wn,min= M/R_v 7,08 см³

579.55 кг/см²

1250 кгс/см²

Удовлетворяет условию прогиба

Вариант 2. Расчет рядовой стойки в угловой зоне

Расчет вертикальной стойки по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Расстояние между креплениями (max из проекта), см:	300
Шаг стоек (тах из проекта), м:	1,3
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом

для угловой зоны

ветровые нагрузки (принимаются по карте 2 приложения ж к Стт 20.13330.2011 - нагрузки и воздействия)								
Ветровой район	la	L	11	Ш	IV	٧	VI	VII
W ₀ , κΠa	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м Коэффициент к для типов местности

	А -открытые побережья морей, озер и водохра нилищ, степи.	В - городские территории, лесные массивы, равномерно покрытые препятствиями высотой более 10 м.	зданиями высотой более 25 м .
до 5	0,75	0,5	0,4
10	1	0,65	0,4
20	1,25	0,85	0,55
40	1,5	1,1	0,8
60	1,7	1,3	1
80	1,85	1,45	1,15
100	2	1,6	1,25
150	2,25	1,9	1,55
200	2,45	2,1	1,8
250	2,65	2,3	2
300	2,75	2,5	2,2
350	2,75	2,75	2,35

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = 0.00521*(q_{pacy}*H_1^4)/(E*f_{\partial on.})$$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

 $K\Gamma C/CM^2$

нормативное значение ветрового давления выбирается исходя из ветрового района

$$N_0 = 38$$
 Krc/ M^2

Расстояние между креплениями стойки (максимальная из проекта)

$$H_1 = 300$$
 CM

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

$$f_{\text{доп}} = H_1/300 = 1,00$$
 cm const

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

$$k(z_e) = 0.975$$

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

$$c = -2,2$$
 const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

$$Yf_1 = 1,4$$
 cons

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

$$Yf_2 = 1$$
 const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

$$\mathsf{Wp} = \mathsf{W}_0^* \mathsf{k}(\mathsf{z}_e)^* [1 + \zeta(\mathsf{z}_e)]^* \mathsf{C}^* \mathsf{V} + (-)^* \mathsf{Yf}_2$$
 где

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП $k(z_e)$ -20.13330.2011

			_					
	Коэфициент пульсаций давления ветра ζ для типов							
Высота z _е , м		местности						
	Α	В	С					
<=5	0,85	1,22	1,78					
10	0,76	1,06	1,78					
20	0,69	0,92	1,5					
40	0,62	0,8	1,26					
60	0,58	0,74	1,14					
80	0,56	0,7	1,06					
100	0,54	0,67	1					
150	0,51	0,62	0,9					

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП ζ(Ze) -

20.13330.2011

 $\zeta(Ze) =$ 0,86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

A площадь ограждения, с которой собирается нагрузка

коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению V+(-) -

(+) и отсосу (-),

принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0,933

Расчитываем нормативное значение пиковой ветровой нагрузки

 $W_o^*k(z_e)^*[1+\zeta(z_e)]^*C^*V^+(-)^*Yf_2$ 141,501

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

Wp *a = 1,840 кг/см q =

Jx = 0.00521*(qpacч*H₁⁴)/(E*fдоп.)

0,00521 = 0,00521Ј_х часть I= І-ая часть формулы $qpac4.*H_1^4 = 14900087887$ J_x часть II= II-ая часть формулы J_x часть III= $E^*f_{gon.} = 710000,00$ III-я часть формулы

109,34 $J_x =$ минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

КП45548 140,01 CM⁴ Wx= 21,26 CM3

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

> M / W_{n, min} R_y

где:

- изгибающий момент;

 $W_{n, \, min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости;

 $\gamma_c = 1$ - коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

R_v=125 Mna - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85). Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле:

 $M = 0.07*Q*a*H_1^2*Yf_1$ 162,25 кг*м

Требуемый минимальный момент сопротивления:

12,98 CM3 Wn,min= M/R_v

> 763,15 кг/см² M/W_x 1250 KFC/CM2

Расчет вертикальной стойки по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Расстояние между креплениями (max из проекта), см:	300
Шаг стоек (max из проекта), м:	1,3
Аэродинамический коэффициент, с:	-2,2
D	V

для угловой зоны

Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Угловая стойка
Заполнение витража:	стеклопакетом

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	Ш	IV	٧	VI	VII
W ₀ , кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффициент к для типов местности			
	А -открытые побережья морей, озер и водохра нилищ, степи.	В - городские территории, лесные массивы, равномерно покрытые препятствиями высотой более 10 м.	С -городские районы с застройкой зданиями высотой более 25 м .	
до 5	0,75	0,5	0,4	
10	1	0,65	0,4	
20	1,25	0,85	0,55	
40	1,5	1,1	0,8	
60	1,7	1,3	1	
80	1,85	1,45	1,15	
100	2	1,6	1,25	
150	2,25	1,9	1,55	
200	2,45	2,1	1,8	
250	2,65	2,3	2	
300	2,75	2,5	2,2	
350	2,75	2,75	2,35	

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = 0.00521*(q_{pac4}*H_1^4)/(E*f_{\partial on.})$$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

710000 KCC/CM2 const

нормативное значение ветрового давления выбирается исходя из ветрового района

 $K\Gamma C/M^2$ $W_0 =$

Расстояние между креплениями стойки (максимальная из проекта)

300 H₁ = СМ

шаг стоек (максимальный из проекта)

М

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

$$k(z_e) =$$

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1=$

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

$$Yf_2=$$

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp=

$$W_o*k(z_e)*[1+\zeta(z_e)]*C*V+(-)*Yf_2$$

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП $k(z_e)$ -20.13330.2011

Высота z _е , м	Коэфициент пульсаций давления ветра ζ для тиг местности				
	Α	В	С		
<=5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП ζ(Ze) -

20.13330.2011

 $\zeta(Ze) =$ 0.86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

Α площадь ограждения, с которой собирается нагрузка

V+(-) -

коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-), принимаемым по табл. 11.8

V+(-)= 0.933

Расчитываем нормативное значение пиковой ветровой нагрузки

 $W_o^*k(z_e)^*[1+\zeta(z_e)]^*C^*V^+(-)^*Yf_2$

141,501

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

 $Jx = (0,00521*(qpacy*H_1^4)/(E*fдоп.))*cos45°$

0,00521 = 0,00521Ј_х часть I= І-ая часть формулы $qpacy.*H_1^4 = 14900087887$ J_√ часть II= II-ая часть формулы $E*f_{gon.} = 710000,00$ J_√ часть III= III-я часть формулы

см⁴ $J_x =$ 77,31 минимально допустимый момент инерции стойки

K∏C 491 Согласно найденному минимально допустимому моменту инерции выбираем стойку:

324,07 CM⁴ Wx= 35,88

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

> M / W_{n, min} R_{y}

где:

- изгибающий момент; М

 $W_{n, \, min}$ =J/r $_{max}$ - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости:

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85); $\gamma_c = 1$

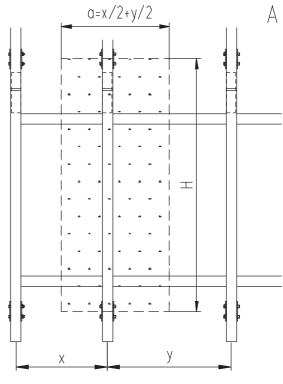
R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85). Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по

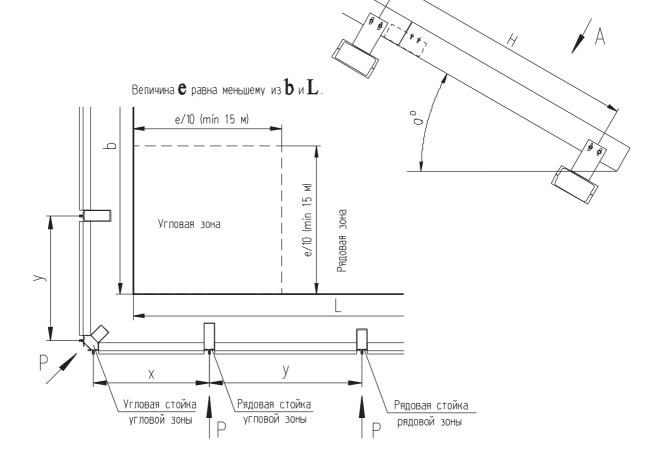
формуле: $M = 0.07*Q*a*H_1^2*Yf_1$ 162,25 кг*м

Требуемый минимальный момент сопротивления:

12,98 см³ Wn,min= M/R_v

> 452.19 кг/см² 1250 кгс/см² σ= M/W_{x} $R_v =$




СТАТИЧЕСКИЕ РАСЧЕТЫ наклонной стойки по двухопорной схеме

План кровли e/5 D E D 9 e/10

Величина $oldsymbol{e}$ равна меньшему из $oldsymbol{b}$ и $oldsymbol{L}$

Двухопорная схема крепления a = x/2 + y/2

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:

Тип местности:	В
Снеговой район:	2
Конструкция на высоте до, м:	30
Длина наклонной стойки (тах из проекта), см:	300
Угол наклона стойки к горизонтальной	
поверхности, градусы:	26
Шаг стоек (тах из проекта), м:	1
Аэродинамический коэффициент, с:	-1,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом
Топшина стекла (Общая топшина стекла в	

для рядовой зоны

стеклопакете), см: Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий, с:

Зона	Положение	Значение
Α	Рядовая зона	-1,2
В Угловая зона		-2,2
С	Кровля зона С	-3,4
D	Кровля зона D	-2,4
Е Кровля зона Е		-1.5

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	Ш	III	IV	V	VI	VII
W₀, кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м²

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффициент к для типов местности					
	А -открытые	В - городские	С -городские			
	побережья	территории, лесные	районы			
	морей, озер и	массивы, равномерно	с застройкой			
	водохра	покрытые	зданиями			
	нилищ, степи.	препятствиями	высотой			
		высотой более 10 м.	более 25 м .			
до 5	0,75	0,5	0,4			
10	1	0,65	0,4			
20	1,25	0,85	0,55			
40	1,5	1,1	0,8			
60	1,7	1,3	1			
80	1,85	1,45	1,15			
100	2	1,6	1,25			
150	2,25	1,9	1,55			
200	2,45	2,1	1,8			
250	2,65	2,3	2			
300	2,75	2,5	2,2			
350	2,75	2,75	2,35			

Выбор расчетного значения снеговой нагрузки принимается в зависимости от снегового района по карте 1 приложения Ж и таб. 10.1 СП 20.13330.2011 "Нагрузки и воздействия"

Снеговые районы		II	III	IV	V	VI	VII
S _g , кПа	0,8	1,2	1,8	2,4	3,2	4,8	5,6

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975. Выбираем согласно снегового района 2 расчетное значение снеговой нагрузки 120кг/м²

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pacy}*H^4)/(E*f_{don.})$$

, где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

E = 710000 $\kappa rc/cm^2$ const

длина наклонной стойки (максимальная из проекта)

H = 300 CM

суммарная расчетная нагрузка

 $q_{pacy} = (Wp + S*cos^2*\alpha)*\psi + g*cos\alpha*\gamma_1$

угол наклона стойки к горизонтальной поверхности

α= 26 градусы

косинус угла наклона

cosα= 0,899

квадрат косинуса угла наклона

 $\cos^2 \alpha = 0,808$

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

 $f_{AOR} = H/300 = 1,00$ cm const

Определение нагрузки от собственного веса остекления на единицу поверхности:

g=	b*y	0,0035	кгс/см² нагрузка от с	обственного веса остекления на
			единицу пов	ерхности
, где:				
b=	1,4	СМ	толщина стекла	(общая толщина стекла в стеклопакете)
y=	0,0025	KLC/CW ₃	const удельный ве	с стекла

Определение снеговой нагрузки на единицу поверхности:

S=S _g *µ=	0,012	кг/см²	расчетное значение снеговой нагрузки на горизонтальную проекцию
, где: S _g =	120	кг/м²	вес снегового покрова на 1 м² горизонтальной поверхности земли, принимаемый в соответствиии с таб 10.2 СП 20.13330.2011 "Нагрузки и воздействия"
μ=	(60-α)/30=	1,0	коэфициент перехода от веса снегового покрова земли к снеговой нагрузке на светопропускающее заполнение принимается по таб.

нагрузке на светопропускающее заполнение принимается по таб. Г.1 приложения Г СП 20.13330.2011 "Нагрузки и воздействия"

μ	α, град
1	α≤30
0	α≥60

Определение ветровой нагрузки на единицу поверхности

нормативное значение ветрового давления выбирается исходя из ветрового района

 $W_0 = 38$ Krc/M²

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) = 0,975$

Расчет ведем для рядовой зоны

аэродинамический коэффициент - величина постоянная

c = -1,2 cons

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1 = 1,4$ const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

 Yf_2 = 1 const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

 $W_o^*k(z_e)^*[1+\zeta(Ze)]^*C^*V^+(-)^*Yf_2$ Wp=

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011 $k(z_e)$ -

Высота z _е , м	Коэфициент пульсаций давления ветра ζ для типов местности				
	Α	В	С		
<=5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

ζ(Ze) коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011

 $\zeta(Ze) =$

ı	A.m²	<2	5	10	>20
1	V+	1	0,9	0,8	0,75
ı	V-	1	0,85	0,75	0,65

площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному

давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)=

Расчитываем нормативное значение пиковой ветровой нагрузки

 $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ 0,00799 KT/CM²

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

 $(\text{Wp+S*cos}^2 \alpha)^* \psi + g^* \cos \alpha^* \gamma_1 =$ 0,0194 q_{расч.} =

, где:

коэфициент сочетания нагрузок при расчете одновременного 0.9 ψ= const действия снеговых и ветровых нагрузок

коэфициент надежности по нагрузкам светопропускающих 1,1 const элементов

CM⁴

 $Jx = (5/384)*(qpacч*a*H^4)/(E*fдоп.)$ 5/384 = 0,01302 J_x часть I= І-ая часть формулы $q_{\text{pacy}} *a*H^4 = 15697347439$ J_x часть II= II-ая часть формулы J_x часть III= Е*fдоп. = 710000,00 III-я часть формулы

287.88 $J_{\nu} =$ минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

KПС 584

351.1 CM⁴

Wx= 39,11 CM³

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле

п.4.11 СНиП2.03.06-85

σ= $M/W_{n, min}$

где:

Μ - изгибающий момент;

 $W_{n,\,min}$ =J/r $_{max}$ - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости; r_{max}

γ_c =1 - коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

R_v=125 Mпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки $Q=(Wp^*Y_{f1}+S^*cos^2*\alpha)^*\psi+g^*cos\alpha^*\gamma_1$ выполняется по формуле:

 $M = (1/8)*Q*a*H^2*Yf_1 =$ 250,39 кг*м

Требуемый минимальный момент сопротивления:

Wn,min= 20,032 cm³ M/R_v

> 640,23 кг/см² 1250 кгс/см² σ= M/W_x

Расчет рядовой стойки в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
<u> </u>	
Тип местности:	В
Снеговой район:	2
Конструкция на высоте до, м:	30
Длина наклонной стойки (тах из проекта), см:	300
Угол наклона стойки к горизонтальной	
поверхности, градусы:	26
Шаг стоек (тах из проекта), м:	1
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в	
стеклопакете), см:	1,4

для угловой зоны

Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий, с:

Зона	Положение	Значение
А Рядовая зона		-1,2
В	Угловая зона	-2,2
С	Кровля зона С	-3,4
D	Кровля зона D	-2,4
E	Кровля зона Е	-1,5

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
W₀, κΠa	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
район	la	I	II	III	IV	V	VI	VII

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м²

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Ze,м	Коэфф	Коэффициент к для типов местности			
	А -открытые	В - городские	С -городские		
	побережья	территории, лесные	районы		
	морей, озер и	массивы, равномерно	с застройкой		
	водохра	покрытые	зданиями		
	нилищ, степи.	препятствиями	высотой		
		высотой более 10 м.	более 25 м .		
до 5	0,75	0,5	0,4		
10	1	0,65	0,4		
20	1,25	0,85	0,55		
40	1,5	1,1	0,8		
60	1,7	1,3	1		
80	1,85	1,45	1,15		
100	2	1,6	1,25		
150	2,25	1,9	1,55		
200	2,45	2,1	1,8		
250	2,65	2,3	2		
300	2,75	2,5	2,2		
350	2,75	2,75	2,35		

Выбор расчетного значения снеговой нагрузки принимается в зависимости от снегового района по карте 1 приложения Ж и таб. 10.1 СП 20.13330.2011 "Нагрузки и воздействия"

S _g , кПа 0,8 1,2 1,8 2,4 3,2 4,8 5,6	Снеговые районы		II	III	IV	V	VI	VII
		0,8	1,2	1,8	2,4	3,2	4,8	5,6

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975. Выбираем согласно снегового района 2 расчетное значение снеговой нагрузки 120кг/м²

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{\partial on.})$$

, где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

кгс/см²

длина наклонной стойки (максимальная из проекта)

300 СМ

суммарная расчетная нагрузка

(Wp+S*cos²*α)*ψ+g*cosα*γ₁

угол наклона стойки к горизонтальной поверхности

градусы

косинус угла наклона

0.899 cosα=

квадрат косинуса угла наклона

0.808

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

H/300= 1.00 const CM

Определение нагрузки от собственного веса остекления на единицу поверхности:

g=	b*y	0,0035	кгс/см² нагрузка от собственного веса остекления на
			единицу поверхности
, где:			
b=	1,4	CM	толщина стекла (общая толщина стекла в стеклопакете)
y=	0,0025	KLC/CW3	const удельный вес стекла

Определение снеговой нагрузки на единицу поверхности:

S=S _g *µ=	0,012	KF/CM²	расчетное значение снеговои нагрузки на горизонтальную проекцию
, где: S _g =	120	кг/м²	вес снегового покрова на 1 м² горизонтальной поверхности земли, принимаемый в соответствиии с таб 10.2 СП 20.13330.2011 "Нагрузки и воздействия"

 $(60-\alpha)/30=$ 1,0

коэфициент перехода от веса снегового покрова земли к снеговой нагрузке на светопропускающее заполнение принимается по таб. Г.1 приложения Г СП 20.13330.2011 "Нагрузки и воздействия"

μ	α, град
1	α≤30
0	α≥60

Определение ветровой нагрузки на единицу поверхности

нормативное значение ветрового давления выбирается исходя из ветрового района

KEC/M2 $W_0 =$

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) =$ 0,975

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1 =$ 1,4 const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp= $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ где

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011 $k(z_e)$ -

Высота z _е , м		Коэфициент пульсаций давления ветра ζ для типов местности				
DBICOTA Ze , M						
	A	В	С			
<=5	0,85	1,22	1,78			
10	0,76	1,06	1,78			
20	0,69	0,92	1,5			
40	0,62	0,8	1,26			
60	0,58	0,74	1,14			
80	0,56	0,7	1,06			
100	0,54	0,67	1			
150	0,51	0,62	0,9			

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011 ζ(Ze) - $\zeta(Ze) =$ 0,86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному

давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0,967

Расчитываем нормативное значение пиковой ветровой нагрузки

0,01466 кг/см² $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

 $(\text{Wp+S*cos}^2*\alpha)*\psi+g*cos\alpha*\gamma_1=$ 0,0254 кг/см q_{nacu} =

, где:

коэфициент сочетания нагрузок при расчете одновременного

0.9 ψ= const действия снеговых и ветровых нагрузок

коэфициент надежности по нагрузкам светопропускающих

элементов γ1= 1.1 const

 $Jx = (5/384)*(qpacy*a*H^4)/(E*fдоп.)$ см

J_х часть I= 5/384 = 0,01302 І-ая часть формулы q_{pacy} *a*H⁴ = 20553643200 J_x часть II= II-ая часть формулы Е*fдоп. = 710000,00 J_x часть III= III-я часть формулы

376,94 см4 минимально допустимый момент инерции стойки

КП45392 Согласно найденному минимально допустимому моменту инерции выбираем стойку:

> 469.37 CM⁴ Wx= 50,7

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

M / $W_{n, \, min}$ σ= R_y

где: - изгибающий момент: М

 $W_{n,\,min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости;

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

 R_v =125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки $Q=(Wp^*Y_{fl}+S^*cos^2*\alpha)^*\psi+g^*cos\alpha^*\gamma_1$ выполняется по формуле

 $M = (1/8)*Q*a*H^2*Yf_1 =$ 344.82 кг*м

Требуемый минимальный момент сопротивления:

27,586 cm³ Wn.min= M/R_v

> M/W_x 680,12 кг/см² 1250 кгс/см²

Вариант 3. Расчет угловой стойки в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Снеговой район:	2
Конструкция на высоте до, м:	30
Длина наклонной стойки (max из проекта), см:	300
Угол наклона стойки к горизонтальной поверхности, градусы:	26
Шаг стоек (тах из проекта), м:	1
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Угловая стойка
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в стеклопакете), см:	1,4

для угловой зоны

Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий, с:

Зона	Положение	Значение
Α	Рядовая зона	-1,2
В	Угловая зона	-2,2
С	Кровля зона С	-3,4
D	Кровля зона D	-2,4
F	Кровпя зона Е	-1.5

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	III	IV	V	VI	VII
W ₀ , кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м²

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффициент к для типов местности			
	А -открытые	В - городские	С -городские	
	побережья	территории, лесные	районы	
	морей, озер и	массивы, равномерно	с застройкой	
	водохра	покрытые	зданиями	
	нилищ, степи.	препятствиями	высотой	
		высотой более 10 м.	более 25 м .	
до 5	0,75	0,5	0,4	
10	1	0,65	0,4	
20	1,25	0,85	0,55	
40	1,5	1,1	0,8	
60	1,7	1,3	1	
80	1,85	1,45	1,15	
100	2	1,6	1,25	
150	2,25	1,9	1,55	
200	2,45	2,1	1,8	
250	2,65	2,3	2	
300	2,75	2,5	2,2	
350	2,75	2,75	2,35	

Выбор расчетного значения снеговой нагрузки принимается в зависимости от снегового района по карте 1 приложения Ж и таб. 10.1 СП 20.13330.2011 "Нагрузки и воздействия"

Снеговые районы		II	III	IV	V	VI	VII
S _g , кПа	0,8	1,2	1,8	2,4	3,2	4,8	5,6

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975. Выбираем согласно снегового района 2 расчетное значение снеговой нагрузки 120кг/м²

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{\partial OR.})$$

, где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

E = 710000 кгс/см²

длина наклонной стойки (максимальная из проекта)

300 СМ

суммарная расчетная нагрузка

(Wp+S*cos²*α)*ψ+g*cosα*γ₁ q_{pacu} =

угол наклона стойки к горизонтальной поверхности

η= 26 градусы

косинус угла наклона

cosα= 0,899

квадрат косинуса угла наклона

шаг стоек (максимальный из проекта)

1

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

H/300 =1,00

Определение нагрузки от собственного веса остекления на единицу поверхности:

g=	b*y	0,0035	кгс/см² нагрузка от собственного веса остекления на единицу поверхности
, где:			
b=	1,4	СМ	толщина стекла (общая толщина стекла в стеклопакете)
v=	0.0025	кгс/см ³	const удельный вес стекла

Определение снеговой нагрузки на единицу поверхности:

S=Sg"µ=	0,012	KI / CIVI-	расчетное значение снеговой нагрузки на горизонтальную проекцию
, где: S _g =	120	кг/м²	вес снегового покрова на 1 м² горизонтальной поверхности земли, принимаемый в соответствиии с таб 10.2 СП 20.13330.2011 "Нагрузки и воздействия"
μ=	(60-α)/30=	1,0	коэфициент перехода от веса снегового покрова земли к снеговой нагрузке на светопропускающее заполнение принимается по таб. Г.1 приложения Г СП 20.13330.2011 "Нагрузки и воздействия"

u	α, град
1	α≤30
0	α≥60

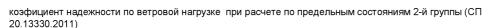
Определение ветровой нагрузки на единицу поверхности

нормативное значение ветрового давления выбирается исходя из ветрового района

кгс/м2

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) =$ 0.975


Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1 =$ const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp= $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011 $k(z_e)$ -

	Коэфициент пульсаций давления ветра ζ для типов						
Высота z _e , м		местности					
	Α	В	С				
<=5	0,85	1,22	1,78				
10	0,76	1,06	1,78				
20	0,69	0,92	1,5				
40	0,62	0,8	1,26				
60	0,58	0,74	1,14				
80	0,56	0,7	1,06				
100	0,54	0,67	1				
150	0,51	0,62	0,9				

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011 ζ(Ze) - $\zeta(Ze) =$ 0,86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному

давлению (+) и отсосу (-), принимаемым по табл. 11.8 $\,$ СП20.13330.2011

V+(-)=

Расчитываем нормативное значение пиковой ветровой нагрузки

$$Np = W_0 * k(z_e) * [1 + \zeta(Ze)] * C * V + (-) * Y f_2$$
 0,01466 KΓ/CM²

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

$$q_{pacy} = (Wp + S^*cos^2 \alpha)^* \psi + g^*cos\alpha^* \gamma_1 = 0,0254$$
 Kr/cm

, где:

коэфициент сочетания нагрузок при расчете одновременного

ψ= 0,9 действия снеговых и ветровых нагрузок const

коэфициент надежности по нагрузкам светопропускающих

см⁴

1,1 элементов const

 $Jx = ((5/384)*(qpacu*a*H^4)/(E*fдon.))*cos45°$

J_x часть I= 5/384 = 0,01302 І-ая часть формулы $q_{pacy} *a*H^4 = 20553643200$ J√ часть II= II-ая часть формулы Е*fдоп. = 710000,00 J_x часть III= III-я часть формулы

266.54 CM⁴ $J_x =$ минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

KПС 584 .lv=351.1 CM⁴ Wx= 39,11

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

$$\sigma$$
= M / W_{n, min} < R_y

где:

Μ - изгибающий момент:

 $W_{n, min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости; r_{max}

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85); $\gamma_c = 1$

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки $Q=(Wp^*Y_{fl}+S^*cos^2*\alpha)^*\psi+g^*cos\alpha^*\gamma_1$ выполняется по формуле:

 $M = (1/8)*Q*a*H^2*Yf_1 =$ 344.82 кг*м

Требуемый минимальный момент сопротивления:

Wn,min= M/R_v 27,586 cm³

> 881,67 кг/см² 1250 KFC/CM² M/W σ= R_v=

СТАТИЧЕСКИЕ РАСЧЕТЫ наклонной стойки по трехопорной схеме

Трехопорная схема крепления План кровли e/5_ D a=x/2+y/2D E 9 e/10 Вепичина $oldsymbol{e}$ равна меньшему из $oldsymbol{b}$ и $oldsymbol{L}$ Величина $oldsymbol{e}$ равна меньшему из $oldsymbol{b}$ и $oldsymbol{L}$. e/10 (min 1.5 м) e/10 (min 1.5 M) Рядовая зона Угловая зона У Угловая стойка Рядовая стойка Рядовая стойка угловой зоны угловой зоны рядовой зоны

Вариант 1. Расчет рядовой стойки в рядовой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Снеговой район:	2
Конструкция на высоте до, м:	30
Длина наклонной стойки (тах из проекта), см:	300
Угол наклона стойки к горизонтальной поверхности, градусы:	26
Шаг стоек (тах из проекта), м:	1
Аэродинамический коэффициент, с:	-1,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в	
стеклопакете), см:	1,4

для рядовой зоны

Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий, с:

Зона	Положение	Значение
Α	Рядовая зона	-1,2
В	Угловая зона	-2,2
С	Кровля зона С	-3,4
D	Кровля зона D	-2,4
E	Кровля зона Е	-1,5

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	l	II	III	IV	V	VI	VII
W₀, кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м²

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффициент к для типов местности					
	А -открытые	В - городские	С -городские			
	побережья	территории, лесные	районы			
	морей, озер и	массивы, равномерно	с застройкой			
	водохра	покрытые	зданиями			
	нилищ, степи.	препятствиями	высотой			
		высотой более 10 м.	более 25 м .			
до 5	0,75	0,5	0,4			
10	1	0,65	0,4			
20	1,25	0,85	0,55			
40	1,5	1,1	0,8			
60	1,7	1,3	1			
80	1,85	1,45	1,15			
100	2	1,6	1,25			
150	2,25	1,9	1,55			
200	2,45	2,1	1,8			
250	2,65	2,3	2			
300	2,75	2,5	2,2			
350	2,75	2,75	2,35			

Выбор расчетного значения снеговой нагрузки принимается в зависимости от снегового района по карте 1 приложения Ж и таб. 10.1 СП 20.13330.2011 "Нагрузки и воздействия"

	1.7						
Снеговые районы		=	Ш	IV	٧	VI	VII
S _g , кПа	0,8	1,2	1,8	2,4	3,2	4,8	5,6

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975. Выбираем согласно снегового района 2 расчетное значение снеговой нагрузки 120кг/м²

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pacy}*H^4)/(E*f_{\partial on.})$$

, где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

кгс/см² const

длина наклонной стойки (максимальная из проекта)

300 СМ

суммарная расчетная нагрузка

(Wp+S*cos2*α)*ψ+g*cosα*γ₁

угол наклона стойки к горизонтальной поверхности

26 градусы

косинус угла наклона 0.899 cosα=

квадрат косинуса угла наклона

0,808 cos²α=

шаг стоек (максимальный из проекта)

М

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

H/300= 1,00 const

Определение нагрузки от собственного веса остекления на единицу поверхности:

g=	b*y	0,0035	кгс/см² нагрузка от собственного веса остекления на
			единицу поверхности
, где:			
b=	1,4	CM	толщина стекла (общая толщина стекла в стеклопакете)
v=	0.0025	кгс/см³	const удельный вес стекла

Определение снеговой нагрузки на единицу поверхности:

S=S _g *µ=	0,012	KΓ/CM²	расчетное значение снеговой нагрузки на
, где: S _g =	120	KΓ/M²	горизонтальную проекцию вес снегового покрова на 1 м² горизонтальной поверхности земли, принимаемый в соответствиии с таб 10.2 СП 20.13330.2011 "Нагрузки и воздействия"
μ=	(60-α)/30=	1,0	коэфициент перехода от веса снегового покрова земли к снеговой

нагрузке на светопропускающее заполнение принимается по таб. Г.1 приложения Г СП 20.13330.2011 "Нагрузки и воздействия"

μ	α, град
1	α≤30
0	α≥60

Определение ветровой нагрузки на единицу поверхности

нормативное значение ветрового давления выбирается исходя из ветрового района

KFC/M2

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) =$ 0,975

Расчет ведем для рядовой зоны

аэродинамический коэффициент - величина постоянная

-1,2

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1 =$ const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

Yf₂= const

 $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ Wp=

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011 $k(z_e)$ -

Высота z _е , м	Коэфициент пу	Коэфициент пульсаций давления ветра ζ для типов местности			
	Α	В	С		
<=5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

ζ(Ze) коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011

 $\zeta(Ze) =$

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

Αплощадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному

давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)=

Расчитываем нормативное значение пиковой ветровой нагрузки

 $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ 0,00799 KT/CM²

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

 $(\text{Wp+S*cos}^2 \times \alpha) \times \psi + g \times \cos \alpha \times \gamma_1 =$ 0,0194 $q_{pacy.} =$

, где:

коэфициент сочетания нагрузок при расчете одновременного 0.9 ψ= const действия снеговых и ветровых нагрузок

коэфициент надежности по нагрузкам светопропускающих

1,1 const элементов

 $Jx = (5/384)*(qpacч*a*H^4)/(E*fдоп.)$ CM⁴

5/384 = 0,01302 J_х часть I= І-ая часть формулы $q_{\text{pacy}} *a*H^4 = 15697347439$ J_x часть II= II-ая часть формулы J_x часть III= Е*fдоп. = 710000,00 III-я часть формулы

287.88 $J_x =$ минимально допустимый момент инерции стойки

KПС 584 Согласно найденному минимально допустимому моменту инерции выбираем стойку:

351,1 СМ Wx= 39,11 CM³

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

 $M/W_{n,\,min}$

где:

M

- изгибающий момент;

 $W_{n,\,min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости; r_{max}

γ_c =1 - коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

 R_y =125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки $Q=(Wp^*Y_{f1}+S^*cos^2*\alpha)^*\psi+g^*cos\alpha^*\gamma_1$ выполняется по формуле:

 $M = (1/8)*Q*a*H^2*Yf_1 =$ 250,39 кг*м

Требуемый минимальный момент сопротивления:

20,032 cm³ Wn,min= M/R_v

> 640,23 кг/см² 1250 кгс/см² σ= M/W_x

Расчет рядовой стойки в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Снеговой район:	2
Конструкция на высоте до, м:	30
Длина наклонной стойки (max из проекта), см:	300
Угол наклона стойки к горизонтальной поверхности, градусы:	26
Шаг стоек (тах из проекта), м:	1
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Рядовая стойка
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в стеклопакете), см:	1,4

для угловой зоны

Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий, с:

Зона	Положение	Значение
Α	Рядовая зона	-1,2
В	Угловая зона	-2,2
С	Кровля зона С	-3,4
D	Кровля зона D	-2,4
E	Кровля зона Е	-1,5

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	III	IV	V	VI	VII
W ₀ , кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м²

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффициент к для типов местности			
	А -открытые	В - городские	С -городские	
	побережья	территории, лесные	районы	
	морей, озер и	массивы, равномерно	с застройкой	
	водохра	покрытые	зданиями	
	нилищ, степи.	препятствиями	высотой	
		высотой более 10 м.	более 25 м .	
до 5	0,75	0,5	0,4	
10	1	0,65	0,4	
20	1,25	0,85	0,55	
40	1,5	1,1	0,8	
60	1,7	1,3	1	
80	1,85	1,45	1,15	
100	2	1,6	1,25	
150	2,25	1,9	1,55	
200	2,45	2,1	1,8	
250	2,65	2,3	2	
300	2,75	2,5	2,2	
350	2,75	2,75	2,35	

Выбор расчетного значения снеговой нагрузки принимается в зависимости от снегового района по карте 1 приложения Ж и таб. 10.1 СП 20.13330.2011 "Нагрузки и воздействия"

•							
Снеговые районы		=	III	IV	V	VI	VII
S _g , кПа	0,8	1,2	1,8	2,4	3,2	4,8	5,6

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975. Выбираем согласно снегового района 2 расчетное значение снеговой нагрузки 120кг/м²

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pacy}*H^4)/(E*f_{don.})$$

, где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

длина наклонной стойки (максимальная из проекта)

СМ

суммарная расчетная нагрузка

(Wp+S*cos²*α)*ψ+g*cosα*γ₁

угол наклона стойки к горизонтальной поверхности

градусы

косинус угла наклона

0,899 cosα=

квадрат косинуса угла наклона

cos2a= 0,808

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

H/300= 1,00 const

Определение нагрузки от собственного веса остекления на единицу поверхности:

g=	b*y	0,0035	кгс/см² нагрузка от собственного веса остекления на
			единицу поверхности
, где:			
b=	1,4	CM	толщина стекла (общая толщина стекла в стеклопакете)
y=	0,0025	кгс/см³	const удельный вес стекла

const Определение снеговой нагрузки на единицу поверхности:

S=S _g *µ=	0,012	кг/см²	расчетное значение снеговой нагрузки на горизонтальную проекцию
, где: S _g =	120	кг/м²	вес снегового покрова на 1 м² горизонтальной поверхности земли, принимаемый в соответствиии с таб 10.2 СП 20.13330.2011 "Нагрузки и воздействия"
μ=	(60-α)/30=	1,0	коэфициент перехода от веса снегового покрова земли к снеговой нагрузке на светопропускающее заполнение принимается по таб. Г.1 приложения Г СП 20.13330.2011 "Нагрузки и воздействия"

μ	α, град
1	α≤30
0	α≥60

Определение ветровой нагрузки на единицу поверхности

нормативное значение ветрового давления выбирается исходя из ветрового района

кгс/м²

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

0,975 $k(z_e) =$

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1 =$ const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

 $Yf_2 =$ const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp= $W_o*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011 $k(z_e)$ -

Высота z _е , м	Коэфициент пу	Коэфициент пульсаций давления ветра ζ для типов местности			
DBICOTA Ze , W		Местности			
	А	В	С		
<=5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011 ζ(Ze) -

 $\zeta(Ze) =$ 0.86

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному

давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)=

Расчитываем нормативное значение пиковой ветровой нагрузки

 $W_o{}^*k(z_e)^*[1{+}\zeta(Ze)]^*C^*V{+}({-})^*Yf_2$ 0,01466 кг/см²

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

 $(Wp+S*cos^2*\alpha)*\psi+g*cos\alpha*\gamma_1=$ 0,0254 кг/см q_{расч.} =

, где:

коэфициент сочетания нагрузок при расчете одновременного

0.9 ψ= const действия снеговых и ветровых нагрузок

коэфициент надежности по нагрузкам светопропускающих 1,1 элементов γ1= const

 $Jx = (5/384)*(qpacu*a*H^4)/(E*fдоп.)$ см

5/384 = 0,01302 J_x часть I= І-ая часть формулы q_{pacy} *a*H⁴ = 20553643200 J_x часть II= II-ая часть формулы Е*fдоп. = 710000,00 J_x часть III= III-я часть формулы

376,94 см⁴ минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

КП45392 CM⁴ 469,37 .lx= Wx= 50.7

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

 $M/W_{n, min}$

где:

- изгибающий момент;

 $W_{n,\,min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости;

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85); $\gamma_c = 1$

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки $Q=(Wp^*Y_{f1}+S^*cos^2*\alpha)^*\psi+g^*cos\alpha^*\gamma_1$ выполняется по формуле:

 $M = (1/8)*Q*a*H^2*Yf_1 =$ 344,82 кг*м

Требуемый минимальный момент сопротивления:

27,586 cm³ Wn.min= M/R.

> σ= M/W_x 680,12 кг/см 1250 KFC/CM² $R_y =$

Вариант 3. Расчет угловой стойки в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Снеговой район:	2
Конструкция на высоте до, м:	30
Длина наклонной стойки (тах из проекта), см:	300
Угол наклона стойки к горизонтальной поверхности, градусы:	26
Шаг стоек (тах из проекта), м:	1
Аэродинамический коэффициент, с:	-2,2
Рассматриваемая стойка:	Угловая стойка
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в стеклопакете), см:	1,4

для угловой зоны

Пиковые значения аэродинамических коэффициентов для прямоугольных в плане зданий, с:

Зона	Положение	Значение
Α	Рядовая зона	-1,2
В	Угловая зона	-2,2
С	Кровля зона С	-3,4
D	Кровля зона D	-2,4
E	Кровля зона Е	-1,5

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	Ш	III	IV	٧	VI	VII
W ₀ , кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W ₀ , кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м²

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота Zе,м	Коэффициент к для типов местности					
	А -открытые	В - городские	С -городские			
	побережья	территории, лесные	районы			
	морей, озер и	массивы, равномерно	с застройкой			
	водохра	покрытые	зданиями			
	нилищ, степи.	препятствиями	высотой			
		высотой более 10 м.	более 25 м .			
до 5	0,75	0,5	0,4			
10	1	0,65	0,4			
20	1,25	0,85	0,55			
40	1,5	1,1	0,8			
60	1,7	1,3	1			
80	1,85	1,45	1,15			
100	2	1,6	1,25			
150	2,25	1,9	1,55			
200	2,45	2,1	1,8			
250	2,65	2,3	2			
300	2,75	2,5	2,2			
350	2,75	2,75	2,35			

Выбор расчетного значения снеговой нагрузки принимается в зависимости от снегового района по карте 1 приложения Ж и таб. 10.1 СП 20.13330.2011 "Нагрузки и воздействия"

Снеговые районы		II	III	IV	V	VI	VII
S _g , кПа	0,8	1,2	1,8	2,4	3,2	4,8	5,6

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975. Выбираем согласно снегового района 2 расчетное значение снеговой нагрузки 120кг/м²

Расчитаем минимально допустимый момент инерции стойки по следующей формуле:

$$J_x = (5/384)*(q_{pacy}*H^4)/(E*f_{\partial on.})$$

, где:

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

E = 710000 кгс/см²

длина наклонной стойки (максимальная из проекта)

300

суммарная расчетная нагрузка

(Wp+S*cos²*α)*ψ+g*cosα*γ₁

угол наклона стойки к горизонтальной поверхности

26 градусы

косинус угла наклона cosα= 0,899

квадрат косинуса угла наклона

 $cos^2\alpha =$ 0,808

шаг стоек (максимальный из проекта)

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

H/300= 1,00

Определение нагрузки от собственного веса остекления на единицу поверхности:

g=	b*y	0,0035	кгс/см² нагрузка от собственного веса остекления на единицу поверхности
, где:			
b=	1,4	CM	толщина стекла (общая толщина стекла в стеклопакете)
y =	0,0025	кгс/см³	const удельный вес стекла

Определение снеговой нагрузки на единицу поверхности:

S=S _g ^µ=	0,012	KF/CM*	расчетное значение снеговои нагрузки на горизонтальную проекцию
, где: S _g =	120	кг/м²	вес снегового покрова на 1 м² горизонтальной поверхности земли, принимаемый в соответствиии с таб 10.2 СП 20.13330.2011 "Нагрузки и воздействия"
μ=	(60-α)/30=	1,0	коэфициент перехода от веса снегового покрова земли к снеговой нагрузке на светопропускающее заполнение принимается по таб. Г.1 приложения Г СП 20.13330.2011 "Нагрузки и воздействия"

μ	α, град
1	α≤30
0	α≥60

Определение ветровой нагрузки на единицу поверхности

нормативное значение ветрового давления выбирается исходя из ветрового района

кгс/м²

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) =$ 0,975

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

-2,2

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1 =$

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

 $Yf_2 =$ const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp= $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011 $k(z_e)$ -

Высота z _е , м	Коэфициент пульсаций давления ветра ζ для типов местности				
	Α	В	С		
<=5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

ζ(Ze) коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011 $\zeta(Ze) =$

A.m²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

площадь ограждения, с которой собирается нагрузка Α -

коэффициенты корреляции ветровой нагрузки, соответствующие положительному V+(-) -

давлению (+) и отсосу (-), принимаемым по табл. 11.8 СП20.13330.2011

V+(-)= 0.967

Расчитываем нормативное значение пиковой ветровой нагрузки

 $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ 0,01466 кг/см² Wp=

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

$$q_{pac4.} = (Wp+S*cos^2*\alpha)*\psi+g*cos\alpha*\gamma_1= 0,0254$$
 кг/см

, где:

коэфициент сочетания нагрузок при расчете одновременного 0,9

ψ= const действия снеговых и ветровых нагрузок

коэфициент надежности по нагрузкам светопропускающих

элементов 1,1 const

 $Jx = ((5/384)*(qpacy*a*H^4)/(E*fдоп.))*cos45°$ CM⁴

5/384 = 0,01302 J_х часть I= І-ая часть формулы $q_{pacy.}*a*H^4 = 20553643200$ Ј, часть II= II-ая часть формулы Е*fдоп. = 710000,00 J_√ часть III= III-я часть формулы

J_v = 266.54 см⁴ минимально допустимый момент инерции стойки

Согласно найденному минимально допустимому моменту инерции выбираем стойку:

KПС 584

=xI.351,1 см⁴

39,11

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

$$\sigma$$
= M / W_{n, min} < R_y

где:

- изгибающий момент;

 $W_{n,\,min}$ = J/r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости; r_{max}

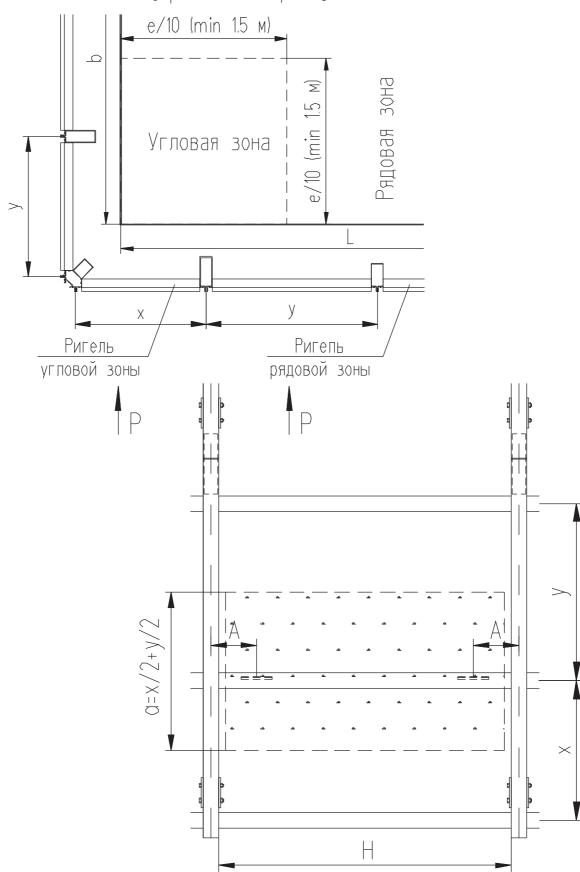
 $\gamma_c = 1$ - коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки $Q=(Wp^*Y_{f1}+S^*cos^2*\alpha)^*\psi+g^*cos\alpha^*\gamma_1$ выполняется по формуле:

 $M = (1/8)*Q*a*H^2*Yf_1 =$ 344,82 кг*м

Требуемый минимальный момент сопротивления:


27,586 cm³ M/R_v Wn.min=

> M/W_x 881,67 кг/см² 1250 кгс/см²

СТАТИЧЕСКИЕ РАСЧЕТЫ ригелей на нагрузку от ветра и веса заполнения

Величина ${f e}$ равна меньшему из ${f b}$ и ${f L}$.

Вариант 1. Расчет ригеля в рядовой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Длина ригеля (тах из проекта), см:	200
Шаг ригелей (тах из проекта), м:	2
Аэродинамический коэффициент, с:	-1,2
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в	
стеклопакете), см:	1,4
Высота стекла (стеклопакета), м:	1,976
Ширина стекла (стеклопакета), м:	2,026
Расстояние до места установки подкладки,	
см:	10

для рядовой зоны

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	III	IV	٧	VI	VII
W ₀ , кПа	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота z _е ,м	Коэффиц	циент k для типов	местности
	А -открытые побережья морей, озер и	В - городские территории, лесные	С -городские районы с застройкой
	водохра	массивы,	зданиями
	нилищ, степи.	равномерно	высотой
	, , , , , , , , , , , , , , , , , , , ,	покрытые	более 25 м
		препятствиями	
		высотой более	
		10 м.	
до 5	0,75	0,5	0,4
10	1	0,65	0,4
20	1,25	0,85	0,55
40	1,5	1,1	0,8
60	1,7	1,3	1
80	1,85	1,45	1,15
100	2	1,6	1,25
150	2,25	1,9	1,55
200	2,45	2,1	1,8
250	2,65	2,3	2
300	2,75	2,5	2,2
350	2,75	2,75	2,35

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции ригеля по следующей формуле:

$$J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{\partial on.})$$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

710000 KFC/CM^2 E = const

нормативное значение ветрового давления выбирается исходя из ветрового района

 $W_0 =$

длина ригеля (максимальная из проекта)

200 СМ

шаг ригелей (максимальный из проекта)

М

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

 $f_{\text{доп}} =$ H/300 =0,67 СМ const

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

 $k(z_e) =$ 0,975

Расчет ведем для рядовой зоны

аэродинамический коэффициент - величина постоянная

-1.2const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

 $Yf_1=$ 1,4 const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

 $Yf_2=$ 1 const

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp= $W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$ где

коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП $k(z_e)$ -20.13330.2011

Высота Zе ,	Коэфициент пульсаций давления ветра ζ для типов местности				
М	A B				
<=5	0,85	1,22	C 1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,5		
40	0,62	0,8	1,26		
60	0,58	0,74	1,14		
80	0,56	0,7	1,06		
100	0,54	0,67	1		
150	0,51	0,62	0,9		

ζ(Ze) коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011

0,86 $\zeta(Ze) =$

A.M²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

Α площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-), принимаемым по табл. 11.

V+(-)= 0.933

Расчитываем нормативное значение пиковой ветровой нагрузки

Wp= $W_o^*k(z_e)^*[1+\zeta(Ze)]^*C^*V^+(-)^*Yf_2$ 77,183 кг/м²

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

q = Wp *a = 1,544 кг/см

```
CM<sup>4</sup>
Jx = (5/384)*(qpacч*H^4)/(E*fдоп.)
J<sub>√</sub> часть I=
                            5/384 = 0,01302
                                                                                І-ая часть формулы
                         q_{pacy} *H^4 = 2469841038
Ј√часть II=
                                                                                II-ая часть формулы
                            E^*f_{\text{don.}} = 473333,33
J<sub>x</sub> часть III=
                                                                                III-я часть формулы
J_x =
                        67,94
                                      см4
                                                               минимально допустимый момент инерции ригеля
```

Согласно найденному минимально допустимому моменту инерции выбираем ригель:

92,74 cm⁴ Jx= 24,55 cm⁴ Jy= 17,38 см³ Wx= Wy= 9,82 см3

КП45368

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

 $M / W_{n, min}$ R_v - изгибающий момент;

 $W_{n,\; min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости:

γ_c =1 - коэффициент условий работы (таб. 15, СНиП 2.03.06-85);

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле:

 $M = (1/8)*Q*a*H^2*Yf_1$ 108,06 кг*м

Требуемый минимальный момент сопротивления:

 $f=((Q*A)/(48*E*Jy))*(3*H_1^2-4*A^2)=$

где: М

> Wn,min= 8,64 CM³ M/R_{v} 621,72 кг/см² 1250 кгс/см² $\sigma =$ M/W_v R_v=

Удовлетворяет условию прогиба по ветровой нагрузке

H/300= 0,67

Расчет ригеля на прогиб от действия веса заполнения витража.

Прогиб ригеля в вертикальной плоскости в случае действия веса заполнения расчитывается по следующей формуле:

0,21

, где: Qсосредоточенная нагрузка рассчитывается по формуле: Q= 140 2,5 -2,5 кг/м² - удельный вес стекла толщиной 1 мм Σδтолщина стекла (общая толщина стекла в стеклопакете), мм Σδ = 14 B₁ высота стекла (стеклопакета), м B₁ = 1,976 H₁ ширина стекла (стеклопакета), м H₁ = 2.026 Αрасстояние до места установки подкладки, см A =

Удовлетворяет условию прогиба от действия веса заполнения витража

Расчет на прочность выполняем по следующей формуле:

σ= M/W_{v} 1250 KCC*CM2 , где: Mизгибающий момент, кгс*см M= 700 (Q*A)/2=кгс*см W_{v} момент сопротивления профиля, см³ $W_v =$ 9,82 CM³ σ= 71,3 1250 KTC*CM2

Ригель расчет на прочность проходит

Вариант 2. Расчет ригеля в угловой зоне

по условию жесткости (СВОД ПРАВИЛ СП20.13330.2011 "Нагрузки и воздействия")

Объект: Жилой комплекс в г. Красноярске

Исходные данные для расчета:

Ветровой район:	3
Тип местности:	В
Конструкция на высоте, м:	30
Длина ригеля (тах из проекта), см:	200
Шаг ригелей (тах из проекта), м:	2
Аэродинамический коэффициент, с:	-2,2
Заполнение витража:	стеклопакетом
Толщина стекла (Общая толщина стекла в	
стеклопакете), см:	1,4
Высота стекла (стеклопакета), м:	1,976
Ширина стекла (стеклопакета), м:	2,026
Расстояние до места установки подкладки,	
см:	10

для угловой зоны

Ветровые нагрузки (принимаются по карте 2 приложения Ж к СП 20.13330.2011 "Нагрузки и воздействия")

Ветровой район	la	I	II	Ш	IV	٧	VI	VII
W ₀ , κΠa	0,17	0,23	0,3	0,38	0,48	0,6	0,73	0,85
W₀, кгс/м2	17	23	30	38	48	60	73	85
город		Москва	Питер	Астрахань	Сочи	Пятигорск	Находка	Камчатск

Объект расположен в 3 ветровом районе. Выбираем из таблицы значение для данного района -38 кгс/м2

Выбор коэффициента, учитывающего изменение ветрового

давления по высоте (табл. 11.2 СП 20.13330.2011"Нагрузки и воздействия")

Высота z _е ,м	Коэффициент к для типов местности			
	А -открытые побережья морей, озер и водохра нилищ, степи.	В - городские территории, лесные массивы, равномерно покрытые препятствиями высотой более 10 м.	С -городские районы с застройкой зданиями высотой более 25 м .	
до 5	0,75	0,5	0,4	
10	1	0,65	0,4	
20	1,25	0,85	0,55	
40	1,5	1,1	0,8	
60	1,7	1,3	1	
80	1,85	1,45	1,15	
100	2	1,6	1,25	
150	2,25	1,9	1,55	
200	2,45	2,1	1,8	
250	2,65	2,3	2	
300	2,75	2,5	2,2	
350	2,75	2,75	2,35	

Здание расположено в районе, соответствующему типу местности В. Учитывая тип местности и высоту на которой находится витраж- 30 м, выбираем значение k(ze)= 0,975

Расчитаем минимально допустимый момент инерции ригеля по следующей формуле:

 $J_x = (5/384)*(q_{pac4}*H^4)/(E*f_{\partial on.})$

где;

модуль Юнга для алюминия (для стали 2100000) является величиной постоянной

E = 710000 $\kappa rc/cm^2$ const

нормативное значение ветрового давления выбирается исходя из ветрового района

$$W_0 = 3$$

 KFC/M^2

длина ригеля (максимальная из проекта)

СМ

шаг ригелей (максимальный из проекта)

М

фактический прогиб для средней однопролетной балки со стеклопакетом (табл.42 СНиП 2.03.06-85)

$$H/300 =$$

коэф-т, учитывающий изменение ветрового давления по высоте выбираем исходя из типа местности и высоты здания

$$k(z_{o}) =$$

Расчет ведем для угловой зоны

аэродинамический коэффициент - величина постоянная

$$c =$$

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 1-й группы (СП 20.13330.2011)

Yf₁=

const

коэфициент надежности по ветровой нагрузке при расчете по предельным состояниям 2-й группы (СП 20.13330.2011)

$$Yf_2=$$

Нормативное значение пиковой ветровой нагрузки расчитываем по формуле:

Wp=

$$W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$$

k(z_e) коэффициент изменения давления ветра на уровне z, принимаемой по табл. 11.2 СП 20.13330.2011

Высота Zе ,	Коэфициент пульсаций давления ветра ζ для типов местности			
М	А	В	С	
<=5	0,85	1,22	1,78	
10	0,76	1,06	1,78	
20	0,69	0,92	1,5	
40	0,62	0,8	1,26	
60	0,58	0,74	1,14	
80	0,56	0,7	1,06	
100	0,54	0,67	1	
150	0,51	0,62	0,9	

ζ(Ze) коэффициент пульсации давления ветра на уровне z, принимаемой по табл. 11.4 СП 20.13330.2011

 $\zeta(Ze) =$ 0.86

A.M²	<2	5	10	>20
V+	1	0,9	0,8	0,75
V-	1	0,85	0,75	0,65

Α площадь ограждения, с которой собирается нагрузка

V+(-) коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-), принимаемым по табл. 11.

V+(-)= 0,933

Расчитываем нормативное значение пиковой ветровой нагрузки

Wp=
$$W_0*k(z_e)*[1+\zeta(Ze)]*C*V+(-)*Yf_2$$

Расчетная линейная равномерная нагрузка на единицу поверхности расчитывается по формуле:

где:


```
см<sup>4</sup>
Jx = (5/384)*(qpacч*H^4)/(E*fдоп.)
J<sub>х</sub> часть I=
                            5/384 = 0,01302
                                                                                І-ая часть формулы
                         q_{pacy} *H^4 = 4528041903
Ј, часть II=
                                                                                II-ая часть формулы
                            E^*f_{\text{доп.}} = 473333,33
J<sub>x</sub> часть III=
                                                                                III-я часть формулы
J_x =
                       124,56
                                                                минимально допустимый момент инерции ригеля
```

Согласно найденному минимально допустимому моменту инерции выбираем ригель:

211,25 см⁴ Jx =34,63 cm⁴ Jy= Wx= 27,26 cm³ 13,85 см3 Wy=

КПС 344

Проверочный расчет по 1-й группе предельных состояний с коэффициентом надежности по ветровой нагрузке 1,4 (СП 20.13330.2011)

Расчет на прочность элементов, изгибаемых в одной из главных плоскостей, следует выполнять по формуле п.4.11 СНиП2.03.06-85

> M / W_{n. min} R_v - изгибающий момент;

 $W_{n,\; min}$ =J/ r_{max} - минимальный момент сопротивления сечения элемента;

- наибольшее расстояние от центра тяжести до края сечения профиля по оси расчетной плоскости;

- коэффициент условий работы (таб. 15, СНиП 2.03.06-85); $y_c = 1$

R_v=125 Мпа - расчетное сопротивление для сплава АД31Т1 ГОСТ22233-2001 (таб. 6, СНиП 2.03.06-85).

Расчет изгибающего момента равнораспределенной нагрузки Q=Wp (в частности ветровой) выполняется по формуле:

> $M = (1/8)*Q*a*H^2*Yf_1$ 198,10 кг*м

Требуемый минимальный момент сопротивления:

15,85 см³ Wn,min= M/R_{v} 726.71 кг/см² 1250 кгс/см² $\sigma =$ M/W_v R_v=

Удовлетворяет условию прогиба по ветровой нагрузке

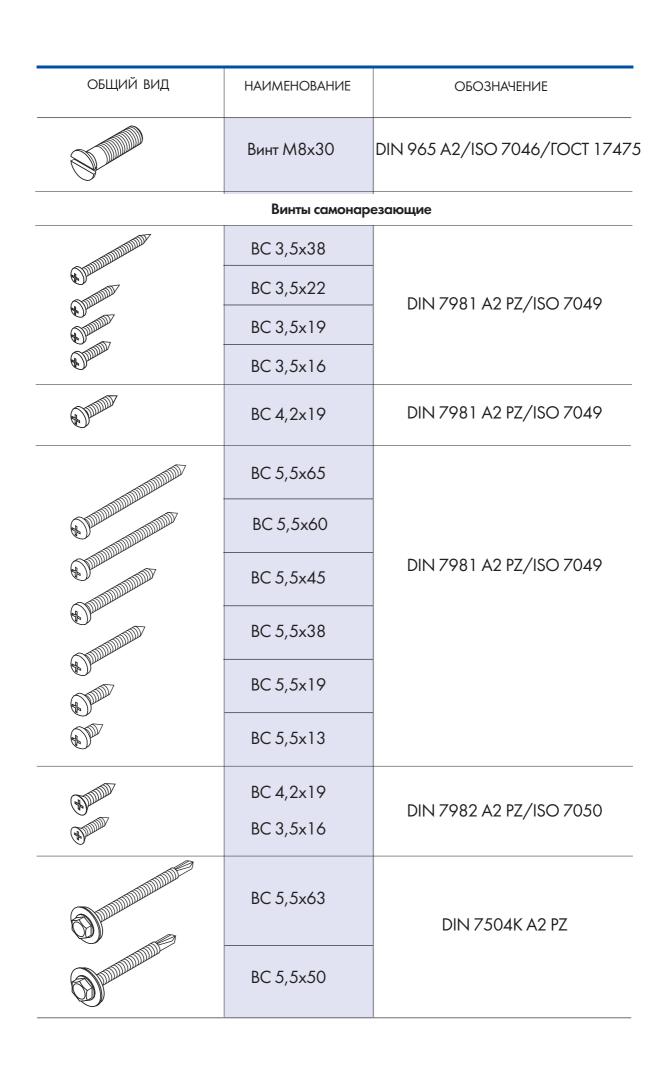
Расчет ригеля на прогиб от действия веса заполнения витража.

Прогиб ригеля в вертикальной плоскости в случае действия веса заполнения расчитывается по следующей формуле:

 $f=((Q*A)/(48*E*Jy))*(3*H_1^2-4*A^2)=$ 0.15 H/300= 0,67 CM СМ , где: Qсосредоточенная нагрузка рассчитывается по формуле: Q= 2,5*∑δ*B₁*H₁= 140 2,5 -2,5 кг/м² - удельный вес стекла толщиной 1 мм ∑δ толщина стекла (общая толщина стекла в стеклопакете), мм ∑δ = 14 ММ высота стекла (стеклопакета), м B₁ -B₁ = 1,976 H₁ ширина стекла (стеклопакета), м H₁ = 2.026 A расстояние до места установки подкладки, см A = 10

Удовлетворяет условию прогиба от действия веса заполнения витража

Расчет на прочность выполняем по следующей формуле:


M/W_v 1250 КГС*СМ2 . где: Mизгибающий момент, кгс*см M= (Q*A)/2=700 кгс*см W_v момент сопротивления профиля, см³ $W_{v} =$ 13,85 CM3 σ= 50,5 1250 KTC*CM2

Ригель расчет на прочность проходит

МЕТИЗЫ

MEIFIODI							
ОБЩИЙ ВИД	НАИМЕНО- ВАНИЕ	ОБОЗНАЧЕНИЕ					
	Болт М10х60	DIN 933 A2/ISO 4017/FOCT 7798					
	Болт M8x100						
	Болт M8x85						
	Болт M8x75	DIN 931 A2/ISO 4014/FOCT 7798 - 70					
	Болт М8х65						
	Болт M8x30						
	Болт M8x25						
	Болт M8x20						
	Гайка М8	DIN 934 A2/ISO 4032/FOCT 5915 - 70					
	Шайба 8, 10	DIN 125 A2/ISO 7089/FOCT 11371 - 78					
	Шайба 8	DIN 127 A2/ΓΟCT 6402 - 73					

